IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p5896-d443789.html
   My bibliography  Save this article

Principal Component Analysis (PCA)-Supported Underfrequency Load Shedding Algorithm

Author

Listed:
  • Tadej Skrjanc

    (Laboratory of Electric Power Supply, Faculty of Electrical Engineering, University of Ljubljana, Trzaska 25, 1000 Ljubljana, Slovenia)

  • Rafael Mihalic

    (Laboratory of Electric Power Supply, Faculty of Electrical Engineering, University of Ljubljana, Trzaska 25, 1000 Ljubljana, Slovenia)

  • Urban Rudez

    (Laboratory of Electric Power Supply, Faculty of Electrical Engineering, University of Ljubljana, Trzaska 25, 1000 Ljubljana, Slovenia)

Abstract

This research represents a conceptual shift in the process of introducing flexibility into power system frequency stability-related protection. The existing underfrequency load shedding (UFLS) solution, although robust and fast, has often proved to be incapable of adjusting to different operating conditions. It triggers upon detection of frequency threshold violations, and functions by interrupting the electricity supply to a certain number of consumers, both of which values are decided upon beforehand. Consequently, it often does not comply with its main purpose, i.e., bringing frequency decay to a halt. Instead, the power imbalance is often reversed, resulting in equally undesirable frequency overshoots. Researchers have sought a solution to this shortcoming either by increasing the amount of available information (by means of wide-area communication) or through complex changes to all involved protection relays. In this research, we retain the existing concept of UFLS that performs so well for fast-occurring frequency events. The flexible rebalancing of power is achieved by a small and specialized group of intelligent electronic devices (IEDs) with machine learning functionalities. These IEDs interrupt consumers only when the need to do so is detected with a high degree of certainty. Their small number assures the fine-tuning of power rebalancing and, at the same time, poses no serious threat to system stability in cases of malfunction.

Suggested Citation

  • Tadej Skrjanc & Rafael Mihalic & Urban Rudez, 2020. "Principal Component Analysis (PCA)-Supported Underfrequency Load Shedding Algorithm," Energies, MDPI, vol. 13(22), pages 1-9, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5896-:d:443789
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/5896/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/5896/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hassan Haes Alhelou & Mohamad Esmail Hamedani-Golshan & Takawira Cuthbert Njenda & Pierluigi Siano, 2019. "A Survey on Power System Blackout and Cascading Events: Research Motivations and Challenges," Energies, MDPI, vol. 12(4), pages 1-28, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Skrjanc, T. & Mihalic, R. & Rudez, U., 2023. "A systematic literature review on under-frequency load shedding protection using clustering methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aníbal Antonio Prada Hurtado & Eduardo Martinez Carrasco & Maria Teresa Villén Martínez & Jose Saldana, 2022. "Application of IIA Method and Virtual Bus Theory for Backup Protection of a Zone Using PMU Data in a WAMPAC System," Energies, MDPI, vol. 15(9), pages 1-34, May.
    2. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    3. Tomáš Fröhlich & Zdeněk Hon & Martin Staněk & Jiří Slabý, 2023. "Method of Identification and Assessment of Security Needs of a Region against the Threat of a Large Power Outage," Energies, MDPI, vol. 16(11), pages 1-16, May.
    4. Zhang, Xi & Liu, Dong & Tu, Haicheng & Tse, Chi Kong, 2022. "An integrated modeling framework for cascading failure study and robustness assessment of cyber-coupled power grids," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    5. Amitkumar V. Jha & Bhargav Appasani & Deepak Kumar Gupta & Taha Selim Ustun, 2022. "Analytical Design of Synchrophasor Communication Networks with Resiliency Analysis Framework for Smart Grid," Sustainability, MDPI, vol. 14(22), pages 1-17, November.
    6. Michael Felix Pacevicius & Marilia Ramos & Davide Roverso & Christian Thun Eriksen & Nicola Paltrinieri, 2022. "Managing Heterogeneous Datasets for Dynamic Risk Analysis of Large-Scale Infrastructures," Energies, MDPI, vol. 15(9), pages 1-40, April.
    7. Mkateko Vivian Mabunda & Ricky Munyaradzi Mukonza & Lufuno Robert Mudzanani, 2023. "The effects of loadshedding on small and medium enterprises in the Collins Chabane local municipality," Journal of Innovation and Entrepreneurship, Springer, vol. 12(1), pages 1-20, December.
    8. Dillip Kumar Mishra & Daria Złotecka & Li Li, 2022. "Significance of SMES Devices for Power System Frequency Regulation Scheme considering Distributed Energy Resources in a Deregulated Environment," Energies, MDPI, vol. 15(5), pages 1-32, February.
    9. Tahir, Muhammad Faizan & Chen, Haoyong & Khan, Asad & Javed, Muhammad Sufyan & Cheema, Khalid Mehmood & Laraik, Noman Ali, 2020. "Significance of demand response in light of current pilot projects in China and devising a problem solution for future advancements," Technology in Society, Elsevier, vol. 63(C).
    10. Elseify, Mohamed A. & Hashim, Fatma A. & Hussien, Abdelazim G. & Kamel, Salah, 2024. "Single and multi-objectives based on an improved golden jackal optimization algorithm for simultaneous integration of multiple capacitors and multi-type DGs in distribution systems," Applied Energy, Elsevier, vol. 353(PA).
    11. Vasiliki Vita & Georgios Fotis & Christos Pavlatos & Valeri Mladenov, 2023. "A New Restoration Strategy in Microgrids after a Blackout with Priority in Critical Loads," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    12. Sonal, & Ghosh, Debomita, 2022. "Impact of situational awareness attributes for resilience assessment of active distribution networks using hybrid dynamic Bayesian multi criteria decision-making approach," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    13. Varbella, Anna & Gjorgiev, Blazhe & Sansavini, Giovanni, 2023. "Geometric deep learning for online prediction of cascading failures in power grids," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    14. Chowdhury, Tamal & Chowdhury, Hemal & Islam, Kazi Sifatul & Sharifi, Ayyoob & Corkish, Richard & Sait, Sadiq M., 2023. "Resilience analysis of a PV/battery system of health care centres in Rohingya refugee camp," Energy, Elsevier, vol. 263(PA).
    15. Wang, Chong & Ju, Ping & Wu, Feng & Lei, Shunbo & Pan, Xueping, 2021. "Sequential steady-state security region-based transmission power system resilience enhancement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    16. Gjorgiev, Blazhe & Sansavini, Giovanni, 2022. "Identifying and assessing power system vulnerabilities to transmission asset outages via cascading failure analysis," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    17. Fathi Mahdi Elsiddig Haroun & Siti Noratiqah Mohamed Deros & Mohd Zafri Bin Baharuddin & Norashidah Md Din, 2021. "Detection of Vegetation Encroachment in Power Transmission Line Corridor from Satellite Imagery Using Support Vector Machine: A Features Analysis Approach," Energies, MDPI, vol. 14(12), pages 1-16, June.
    18. Hyun-Tae Kim & Jungju Lee & Myungseok Yoon & Moon-Jeong Lee & Namhun Cho & Sungyun Choi, 2020. "Continuation Power Flow Based Distributed Energy Resource Hosting Capacity Estimation Considering Renewable Energy Uncertainty and Stability in Distribution Systems," Energies, MDPI, vol. 13(17), pages 1-16, August.
    19. Singh, Uday & Zou, Wei & Chandrasekar, V.K. & Senthilkumar, D.V., 2024. "Robust network of globally coupled heterogeneous limit cycle oscillators due to inertia," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    20. Wiese, Melanie & van der Westhuizen, Liezl-Marié, 2024. "Impact of planned power outages (load shedding) on consumers in developing countries: Evidence from South Africa," Energy Policy, Elsevier, vol. 187(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5896-:d:443789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.