IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v226y2022ics0951832022002897.html
   My bibliography  Save this article

An integrated modeling framework for cascading failure study and robustness assessment of cyber-coupled power grids

Author

Listed:
  • Zhang, Xi
  • Liu, Dong
  • Tu, Haicheng
  • Tse, Chi Kong

Abstract

The extensive deployment of information and communication technologies significantly changes the characteristics of power grids. In this paper, we propose an integrated modeling framework for studying cascading failure and assessing the robustness of cyber-coupled power grids. By taking the perspective of cyber–physical systems, this framework depicts the electrical characteristics of the physical network, the realistic monitoring, control, and protection functions provided by the coupled cyber network, and integration with decentralized functions. It also includes a flow chart that generates a sequence of failure events in cyber-coupled power grids for simulating cascading failure. Based on the framework, a series of specific models can be constructed by incorporating concrete considerations. We demonstrate the robustness assessment of cyber-coupled power grids by one specific case study based on the modeling framework with appropriate assumptions made. Simulation results on four power test cases show that the cyber network can help effectively mitigate cascading failure and thus enhance the robustness of the grid. Moreover, the faults from the cyber layer can intensify the failure cascade and lead to a catastrophic power outage.

Suggested Citation

  • Zhang, Xi & Liu, Dong & Tu, Haicheng & Tse, Chi Kong, 2022. "An integrated modeling framework for cascading failure study and robustness assessment of cyber-coupled power grids," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:reensy:v:226:y:2022:i:c:s0951832022002897
    DOI: 10.1016/j.ress.2022.108654
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022002897
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108654?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bolbot, Victor & Theotokatos, Gerasimos & Bujorianu, Luminita Manuela & Boulougouris, Evangelos & Vassalos, Dracos, 2019. "Vulnerabilities and safety assurance methods in Cyber-Physical Systems: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 179-193.
    2. Ding, Zhetong & Chen, Chunyu & Cui, Mingjian & Bi, Wenjun & Chen, Yang & Li, Fangxing, 2021. "Dynamic game-based defensive primary frequency control system considering intelligent attackers," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Wu, Yipeng & Chen, Zhilong & Dang, Junhu & Chen, Yicun & Zhao, Xudong & Zha, Lvying, 2022. "Allocation of defensive and restorative resources in electric power system against consecutive multi-target attacks," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    4. Wu, Gongyu & Li, Meiyan & Li, Zhaojun Steven, 2021. "A Gene Importance based Evolutionary Algorithm (GIEA) for identifying critical nodes in Cyber–Physical Power Systems," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    5. David, Alexander E. & Gjorgiev, Blazhe & Sansavini, Giovanni, 2020. "Quantitative comparison of cascading failure models for risk-based decision making in power systems," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    6. Woodard, Mark & Marashi, Koosha & Sedigh Sarvestani, Sahra & Hurson, Ali R., 2021. "Survivability evaluation and importance analysis for cyber–physical smart grids," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    7. Azzolin, Alberto & Dueñas-Osorio, Leonardo & Cadini, Francesco & Zio, Enrico, 2018. "Electrical and topological drivers of the cascading failure dynamics in power transmission networks," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 196-206.
    8. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    9. Tu, Haicheng & Xia, Yongxiang & Wu, Jiajing & Zhou, Xiang, 2019. "Robustness assessment of cyber–physical systems with weak interdependency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 9-17.
    10. Ding, Weiyong & Xu, Maochao & Huang, Yu & Zhao, Peng, 2020. "Cyber risks of PMU networks with observation errors: Assessment and mitigation," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    11. Liu, Hao & Chen, Xin & Huo, Long & Zhang, Yadong & Niu, Chunming, 2022. "Impact of inter-network assortativity on robustness against cascading failures in cyber–physical power systems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    12. Cadini, Francesco & Agliardi, Gian Luca & Zio, Enrico, 2017. "Estimation of rare event probabilities in power transmission networks subject to cascading failures," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 9-20.
    13. Wang, Wei & Cova, Gregorio & Zio, Enrico, 2022. "A clustering-based framework for searching vulnerabilities in the operation dynamics of Cyber-Physical Energy Systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    14. Zang, Tianlei & Gao, Shibin & Liu, Baoxu & Huang, Tao & Wang, Tao & Wei, Xiaoguang, 2019. "Integrated fault propagation model based vulnerability assessment of the electrical cyber-physical system under cyber attacks," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 232-241.
    15. Hassan Haes Alhelou & Mohamad Esmail Hamedani-Golshan & Takawira Cuthbert Njenda & Pierluigi Siano, 2019. "A Survey on Power System Blackout and Cascading Events: Research Motivations and Challenges," Energies, MDPI, vol. 12(4), pages 1-28, February.
    16. Wu, Shimeng & Jiang, Yuchen & Luo, Hao & Zhang, Jiusi & Yin, Shen & Kaynak, Okyay, 2022. "An integrated data-driven scheme for the defense of typical cyber–physical attacks," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Yixin & Cai, Baoping & Kang, Henry Hooi-Siang & Liu, Yiliu, 2023. "Cascading failure analysis of multistate loading dependent systems with application in an overloading piping network," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    2. Li, Sheng & Liu, Wenwen & Wu, Ruizi & Li, Junli, 2023. "An adaptive attack model to network controllability," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Ding, Xiao & Wang, Huan & Zhang, Xi & Ma, Chuang & Zhang, Hai-Feng, 2024. "Dual nature of cyber–physical power systems and the mitigation strategies," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    4. Tang, Maochun & Xiahou, Tangfan & Liu, Yu, 2023. "Mission performance analysis of phased-mission systems with cross-phase competing failures," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    5. Diao, Xiaoxu & Zhao, Yunfei & Smidts, Carol & Vaddi, Pavan Kumar & Li, Ruixuan & Lei, Hangtian & Chakhchoukh, Yacine & Johnson, Brian & Blanc, Katya Le, 2024. "Dynamic probabilistic risk assessment for electric grid cybersecurity," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    6. Zhu, Darui & Cheng, Wenji & Duan, Jiandong & Wang, Haifeng & Bai, Jing, 2023. "Identifying and assessing risk of cascading failure sequence in AC/DC hybrid power grid based on non-cooperative game theory," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    7. Wang, Shuliang & Guo, Zhaoyang & Huang, Xiaodi & Zhang, Jianhua, 2024. "A three-stage model of quantifying and analyzing power network resilience based on network theory," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    8. Li, Ruimeng & Yang, Naiding & Yi, Hao & Jin, Na, 2023. "The robustness of complex product development projects under design change risk propagation with gray attack information," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    9. Xu, Sheng & Tu, Haicheng & Xia, Yongxiang, 2023. "Resilience enhancement of renewable cyber–physical power system against malware attacks," Reliability Engineering and System Safety, Elsevier, vol. 229(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Zhengcheng & Tian, Meng & Li, Xin & Lai, Jingang & Tang, Ruoli, 2022. "Mitigating cascading failures of spatially embedded cyber–physical power systems by adding additional information links," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    2. Ding, Xiao & Wang, Huan & Zhang, Xi & Ma, Chuang & Zhang, Hai-Feng, 2024. "Dual nature of cyber–physical power systems and the mitigation strategies," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    3. Tang, Daogui & Fang, Yi-Ping & Zio, Enrico, 2023. "Vulnerability analysis of demand-response with renewable energy integration in smart grids to cyber attacks and online detection methods," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    4. Badrsimaei, Hamed & Hooshmand, Rahmat-Allah & Nobakhtian, Soghra, 2023. "Observable placement of phasor measurement units for defense against data integrity attacks in real time power markets," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    5. Abbasizadeh, Ali & Azad-Farsani, Ehsan, 2024. "Cyber-constrained load shedding for smart grid resilience enhancement," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    6. Diao, Xiaoxu & Zhao, Yunfei & Smidts, Carol & Vaddi, Pavan Kumar & Li, Ruixuan & Lei, Hangtian & Chakhchoukh, Yacine & Johnson, Brian & Blanc, Katya Le, 2024. "Dynamic probabilistic risk assessment for electric grid cybersecurity," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    7. Gao, Xingle & Peng, Minfang & Tse, Chi K., 2022. "Robustness analysis of cyber-coupled power systems with considerations of interdependence of structures, operations and dynamic behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    8. Wang, Wei & Cova, Gregorio & Zio, Enrico, 2022. "A clustering-based framework for searching vulnerabilities in the operation dynamics of Cyber-Physical Energy Systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    9. Gao, Xingle & Peng, Minfang & Zhang, Ji & Shao, Hua & Liu, Yanchen, 2024. "A cascading failure model of cyber-coupled power system considering virus propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    10. Berghout, Tarek & Benbouzid, Mohamed, 2022. "EL-NAHL: Exploring labels autoencoding in augmented hidden layers of feedforward neural networks for cybersecurity in smart grids," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    11. Dui, Hongyan & Meng, Xueyu & Xiao, Hui & Guo, Jianjun, 2020. "Analysis of the cascading failure for scale-free networks based on a multi-strategy evolutionary game," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    12. Fu, Xiuwen & Wang, Ye & Yang, Yongsheng & Postolache, Octavian, 2022. "Analysis on cascading reliability of edge-assisted Internet of Things," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    13. Xie, Haipeng & Tang, Lingfeng & Zhu, Hao & Cheng, Xiaofeng & Bie, Zhaohong, 2023. "Robustness assessment and enhancement of deep reinforcement learning-enabled load restoration for distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    14. Lu, Qing-Chang & Zhang, Lei & Xu, Peng-Cheng & Cui, Xin & Li, Jing, 2022. "Modeling network vulnerability of urban rail transit under cascading failures: A Coupled Map Lattices approach," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    15. Wang, Shuliang & Lv, Wenzhuo & Zhang, Jianhua & Luan, Shengyang & Chen, Chen & Gu, Xifeng, 2021. "Method of power network critical nodes identification and robustness enhancement based on a cooperative framework," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    16. Zhang, Lin & Xu, Min & Wang, Shuaian, 2023. "Quantifying bus route service disruptions under interdependent cascading failures of a multimodal public transit system based on an improved coupled map lattice model," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    17. Wang, Shuliang & Gu, Xifeng & Chen, Jiawei & Chen, Chen & Huang, Xiaodi, 2023. "Robustness improvement strategy of cyber-physical systems with weak interdependency," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    18. Wu, Gongyu & Li, Meiyan & Li, Zhaojun Steven, 2021. "A Gene Importance based Evolutionary Algorithm (GIEA) for identifying critical nodes in Cyber–Physical Power Systems," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    19. Gao, Yanli & Chen, Shiming & Zhou, Jie & Zhang, Jingjing & Stanley, H.E., 2020. "Multiple phase transition in the non-symmetrical interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    20. Rocchetta, Roberto, 2022. "Enhancing the resilience of critical infrastructures: Statistical analysis of power grid spectral clustering and post-contingency vulnerability metrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:226:y:2022:i:c:s0951832022002897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.