IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5759-d439435.html
   My bibliography  Save this article

Influence of the Calcination Temperature of Synthetic Gypsum on the Particle Size Distribution and Setting Time of Modified Building Materials

Author

Listed:
  • Artur Koper

    (Institute of Building, Faculty of Civil Engineering, Mechanics and Petrochemistry, Warsaw University of Technology, Łukasiewicza Street 17, 09-400 Płock, Poland)

  • Karol Prałat

    (Institute of Building, Faculty of Civil Engineering, Mechanics and Petrochemistry, Warsaw University of Technology, Łukasiewicza Street 17, 09-400 Płock, Poland)

  • Justyna Ciemnicka

    (Institute of Building, Faculty of Civil Engineering, Mechanics and Petrochemistry, Warsaw University of Technology, Łukasiewicza Street 17, 09-400 Płock, Poland)

  • Katarzyna Buczkowska

    (Department of Material Science, Faculty of Mechanical Engineering, Technical University od Liberec, Studentska Street 2, 461-17 Liberec, Czech Republic
    Department of Materials Technology and Production Systems, Faculty of Mechanical Engineering, Lodz University of Technology, Stefanowskiego Street 1/15, 90-537 Łódź, Poland)

Abstract

The paper assesses the influence of the calcination temperature of synthetic gypsum binder on the binding properties of innovative gypsum pastes, as well as on masonry and plastering mortars. The calcination process of gypsum binder was carried out at four different temperatures ranging from 170 to 190 °C. The specimens for testing were prepared on the basis of the obtained raw material with a constant water to gypsum ratio of w/g = 0.75. It was noted that the calcination temperature influenced the setting time of the gypsum. Based on synthetic gypsum, mixtures of masonry and plastering mortars modified with tartaric acid and Plast Retard were designed. During the experiment, the particle diameter distribution of aqueous suspensions of building and synthetic gypsum particles (before and after calcination) was determined using the Fraunhofer laser method. The dimensions of the obtained artificial gypsum grains did not differ from the diameters of the gypsum grains in the reference sample. On the basis of the conducted research, it was found that the waste synthetic gypsum obtained in the flue gas desulphurization process met the standard conditions related to its setting time. Therefore, it may be a very good construction substitute for natural gypsum, and consequently, it may contribute to environmental protection and the saving and respecting of energy.

Suggested Citation

  • Artur Koper & Karol Prałat & Justyna Ciemnicka & Katarzyna Buczkowska, 2020. "Influence of the Calcination Temperature of Synthetic Gypsum on the Particle Size Distribution and Setting Time of Modified Building Materials," Energies, MDPI, vol. 13(21), pages 1-23, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5759-:d:439435
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5759/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5759/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fabio Bisegna & Benedetta Mattoni & Paola Gori & Francesco Asdrubali & Claudia Guattari & Luca Evangelisti & Sara Sambuco & Francesco Bianchi, 2016. "Influence of Insulating Materials on Green Building Rating System Results," Energies, MDPI, vol. 9(9), pages 1-17, September.
    2. Schiavoni, S. & D׳Alessandro, F. & Bianchi, F. & Asdrubali, F., 2016. "Insulation materials for the building sector: A review and comparative analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 988-1011.
    3. Galos, K. A. & Smakowski, T. S. & Szlugaj, J., 2003. "Flue-gas desulphurisation products from Polish coal-fired power-plants," Applied Energy, Elsevier, vol. 75(3-4), pages 257-265, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benedetti Miriam & Herce Carlos & Sforzini Matteo & Susca Tiziana & Toro Claudia, 2024. "Defining a sustainable supply chain for buildings Off-Site envelope thermal insulation solutions: proposal of a methodology to investigate opportunities based on a context analysis," Logistics, Supply Chain, Sustainability and Global Challenges, Sciendo, vol. 15(s1), pages 38-57.
    2. Jiang, Wei & Jin, Yang & Liu, Gongliang & Li, Qing & Li, Dong, 2023. "Passive nearly zero energy retrofits of rammed earth rural residential buildings based on energy efficiency and cost-effectiveness analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    3. Stefano Cascone & Gianpiero Evola & Antonio Gagliano & Gaetano Sciuto & Chiara Baroetto Parisi, 2019. "Laboratory and In-Situ Measurements for Thermal and Acoustic Performance of Straw Bales," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    4. Hawks, M.A. & Cho, S., 2024. "Review and analysis of current solutions and trends for zero energy building (ZEB) thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    5. Alejandro Padilla-Rivera & Ben Amor & Pierre Blanchet, 2018. "Evaluating the Link between Low Carbon Reductions Strategies and Its Performance in the Context of Climate Change: A Carbon Footprint of a Wood-Frame Residential Building in Quebec, Canada," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    6. Piccardo, C. & Dodoo, A. & Gustavsson, L. & Tettey, U.Y.A., 2020. "Retrofitting with different building materials: Life-cycle primary energy implications," Energy, Elsevier, vol. 192(C).
    7. Zhang, Xingxing & Lovati, Marco & Vigna, Ilaria & Widén, Joakim & Han, Mengjie & Gal, Csilla & Feng, Tao, 2018. "A review of urban energy systems at building cluster level incorporating renewable-energy-source (RES) envelope solutions," Applied Energy, Elsevier, vol. 230(C), pages 1034-1056.
    8. Claudia Fabiani & Anna Laura Pisello & Marco Barbanera & Luisa F. Cabeza & Franco Cotana, 2019. "Assessing the Potentiality of Animal Fat Based-Bio Phase Change Materials (PCM) for Building Applications: An Innovative Multipurpose Thermal Investigation," Energies, MDPI, vol. 12(6), pages 1-18, March.
    9. Sebastian Czernik & Marta Marcinek & Bartosz Michałowski & Michał Piasecki & Justyna Tomaszewska & Jacek Michalak, 2020. "Environmental Footprint of Cementitious Adhesives—Components of ETICS," Sustainability, MDPI, vol. 12(21), pages 1-13, October.
    10. Villasmil, Willy & Fischer, Ludger J. & Worlitschek, Jörg, 2019. "A review and evaluation of thermal insulation materials and methods for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 71-84.
    11. Ericsson, Karin, 2007. "Co-firing—A strategy for bioenergy in Poland?," Energy, Elsevier, vol. 32(10), pages 1838-1847.
    12. Božiček, D. & Peterková, J. & Zach, J. & Košir, M., 2024. "Vacuum insulation panels: An overview of research literature with an emphasis on environmental and economic studies for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    13. Taesub Lim & Jaewang Seok & Daeung Danny Kim, 2017. "A Comparative Study of Energy Performance of Fumed Silica Vacuum Insulation Panels in an Apartment Building," Energies, MDPI, vol. 10(12), pages 1-12, December.
    14. De Masi, Rosa Francesca & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2020. "Multi-layered wall with vacuum insulation panels: Results of 5-years in-field monitoring and numerical analysis of aging effect on building consumptions," Applied Energy, Elsevier, vol. 278(C).
    15. García-Gusano, Diego & Iribarren, Diego & Dufour, Javier, 2018. "Is coal extension a sensible option for energy planning? A combined energy systems modelling and life cycle assessment approach," Energy Policy, Elsevier, vol. 114(C), pages 413-421.
    16. Ho Baik & Minju Kim & Sang-Heon Lee & Hunhee Cho, 2018. "Simulation Model for Productivity Analysis of External Insulated Precast Concrete Wall System," Sustainability, MDPI, vol. 10(1), pages 1-20, January.
    17. Gonçalves, Márcio & Simões, Nuno & Serra, Catarina & Flores-Colen, Inês, 2020. "A review of the challenges posed by the use of vacuum panels in external insulation finishing systems," Applied Energy, Elsevier, vol. 257(C).
    18. Guo, Haijin & Cai, Shanshan & Li, Kun & Liu, Zhongming & Xia, Lizhi & Xiong, Jiazhuang, 2020. "Simultaneous test and visual identification of heat and moisture transport in several types of thermal insulation," Energy, Elsevier, vol. 197(C).
    19. Jacek Michalak & Sebastian Czernik & Marta Marcinek & Bartosz Michałowski, 2020. "Environmental burdens of External Thermal Insulation Systems. Expanded Polystyrene vs. Mineral Wool: Case Study from Poland," Sustainability, MDPI, vol. 12(11), pages 1-16, June.
    20. Maatouk Khoukhi & Abeer Dar Saleh & Ahmed Hassan & Shaimaa Abdelbaqi, 2021. "Thermal Characterization of a New Bio-Based Insulation Material Containing Puffed Rice," Energies, MDPI, vol. 14(18), pages 1-12, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5759-:d:439435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.