IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i12p2000-d121167.html
   My bibliography  Save this article

A Comparative Study of Energy Performance of Fumed Silica Vacuum Insulation Panels in an Apartment Building

Author

Listed:
  • Taesub Lim

    (Department of Architectural Engineering, Seoil University, Seoul 02192, Korea)

  • Jaewang Seok

    (Department of Security, Land, Disaster Management, Konkuk University, Seoul 05029, Korea)

  • Daeung Danny Kim

    (Architectural Engineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia)

Abstract

Building insulation materials has a significant impact on building energy consumptions. However, conventional materials are easily flammable and can cause fire disasters in buildings. Therefore, it is important to select appropriate insulation materials for building energy efficiency and safety and Vacuum Insulation Panels (VIPs) are increasingly applied to building insulation. Considering this, the present study investigates energy performance of VIPs with design alternatives, such as window systems, infiltration rates, etc., by using energy simulation. Among various VIPs, fumes silica VIPs were chosen. In addition, eight combinations were compared to find the best energy efficient design conditions. The results of the present study showed that building energy performance can be improved with an appropriate combination of design options including fumed silica VIPs.

Suggested Citation

  • Taesub Lim & Jaewang Seok & Daeung Danny Kim, 2017. "A Comparative Study of Energy Performance of Fumed Silica Vacuum Insulation Panels in an Apartment Building," Energies, MDPI, vol. 10(12), pages 1-12, December.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2000-:d:121167
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/12/2000/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/12/2000/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kalnæs, Simen Edsjø & Jelle, Bjørn Petter, 2014. "Vacuum insulation panel products: A state-of-the-art review and future research pathways," Applied Energy, Elsevier, vol. 116(C), pages 355-375.
    2. Abdul Mujeebu, Muhammad & Ashraf, Noman & Alsuwayigh, Abdulkarim, 2016. "Energy performance and economic viability of nano aerogel glazing and nano vacuum insulation panel in multi-story office building," Energy, Elsevier, vol. 113(C), pages 949-956.
    3. Copiello, Sergio, 2017. "Building energy efficiency: A research branch made of paradoxes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1064-1076.
    4. Nemanič, V. & Zajec, B. & Žumer, M. & Figar, N. & Kavšek, M. & Mihelič, I., 2014. "Synthesis and characterization of melamine–formaldehyde rigid foams for vacuum thermal insulation," Applied Energy, Elsevier, vol. 114(C), pages 320-326.
    5. Du, Zhimin & Jin, Xinqiao & Fang, Xing & Fan, Bo, 2016. "A dual-benchmark based energy analysis method to evaluate control strategies for building HVAC systems," Applied Energy, Elsevier, vol. 183(C), pages 700-714.
    6. Abdul Mujeebu, Muhammad & Ashraf, Noman & Alsuwayigh, Abdulkarim H., 2016. "Effect of nano vacuum insulation panel and nanogel glazing on the energy performance of office building," Applied Energy, Elsevier, vol. 173(C), pages 141-151.
    7. Schiavoni, S. & D׳Alessandro, F. & Bianchi, F. & Asdrubali, F., 2016. "Insulation materials for the building sector: A review and comparative analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 988-1011.
    8. Yang, Tao & Pan, Yiqun & Mao, Jiachen & Wang, Yonglong & Huang, Zhizhong, 2016. "An automated optimization method for calibrating building energy simulation models with measured data: Orientation and a case study," Applied Energy, Elsevier, vol. 179(C), pages 1220-1231.
    9. Jim, C.Y., 2014. "Air-conditioning energy consumption due to green roofs with different building thermal insulation," Applied Energy, Elsevier, vol. 128(C), pages 49-59.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang Yang & Takao Katsura & Masahiro Aihara & Makoto Nakamura & Katsunori Nagano, 2017. "Development of Numerical Heat Transfer and the Structural Model to Design Slim and Translucent Vacuum Layer Type Insulation Panels to Retrofitting Insulation in Existing Buildings," Energies, MDPI, vol. 10(12), pages 1-15, December.
    2. Zhang Yang & Takao Katsura & Masahiro Aihara & Makoto Nakamura & Katsunori Nagano, 2018. "Investigation into Window Insulation Retrofitting of Existing Buildings Using Thin and Translucent Frame-Structure Vacuum Insulation Panels," Energies, MDPI, vol. 11(2), pages 1-13, January.
    3. Kaushik Biswas, 2018. "Development and Validation of Numerical Models for Evaluation of Foam-Vacuum Insulation Panel Composite Boards, Including Edge Effects," Energies, MDPI, vol. 11(9), pages 1-16, August.
    4. Kaushik Biswas & Rohit Jogineedi & Andre Desjarlais, 2019. "Experimental and Numerical Examination of Naturally-Aged Foam-VIP Composites," Energies, MDPI, vol. 12(13), pages 1-12, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alam, M. & Singh, H. & Suresh, S. & Redpath, D.A.G., 2017. "Energy and economic analysis of Vacuum Insulation Panels (VIPs) used in non-domestic buildings," Applied Energy, Elsevier, vol. 188(C), pages 1-8.
    2. Božiček, D. & Peterková, J. & Zach, J. & Košir, M., 2024. "Vacuum insulation panels: An overview of research literature with an emphasis on environmental and economic studies for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    3. Gonçalves, Márcio & Simões, Nuno & Serra, Catarina & Flores-Colen, Inês, 2020. "A review of the challenges posed by the use of vacuum panels in external insulation finishing systems," Applied Energy, Elsevier, vol. 257(C).
    4. Pathomthat Chiradeja & Surakit Thongsuk & Santipont Ananwattanaporn & Atthapol Ngaopitakkul & Suntiti Yoomak, 2023. "A Study on Transparent Type Envelope Material in Terms of Overall Thermal Transfer, Energy, and Economy for an Office Building Based on the Thai Building Energy Code," Sustainability, MDPI, vol. 15(13), pages 1-17, July.
    5. Villasmil, Willy & Fischer, Ludger J. & Worlitschek, Jörg, 2019. "A review and evaluation of thermal insulation materials and methods for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 71-84.
    6. De Masi, Rosa Francesca & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2020. "Multi-layered wall with vacuum insulation panels: Results of 5-years in-field monitoring and numerical analysis of aging effect on building consumptions," Applied Energy, Elsevier, vol. 278(C).
    7. Yang, Yang & Chen, Sarula, 2022. "Thermal insulation solutions for opaque envelope of low-energy buildings: A systematic review of methods and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Ahmed Abdelrady & Mohamed Hssan Hassan Abdelhafez & Ayman Ragab, 2021. "Use of Insulation Based on Nanomaterials to Improve Energy Efficiency of Residential Buildings in a Hot Desert Climate," Sustainability, MDPI, vol. 13(9), pages 1-17, May.
    9. Elaouzy, Y. & El Fadar, A., 2022. "Energy, economic and environmental benefits of integrating passive design strategies into buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    10. Abdul Mujeebu, Muhammad & Ashraf, Noman & Alsuwayigh, Abdulkarim, 2016. "Energy performance and economic viability of nano aerogel glazing and nano vacuum insulation panel in multi-story office building," Energy, Elsevier, vol. 113(C), pages 949-956.
    11. Biswas, Kaushik & Desjarlais, Andre & Smith, Douglas & Letts, John & Yao, Jennifer & Jiang, Timothy, 2018. "Development and thermal performance verification of composite insulation boards containing foam-encapsulated vacuum insulation panels," Applied Energy, Elsevier, vol. 228(C), pages 1159-1172.
    12. Liang Guo & Wenbin Tong & Yexin Xu & Hong Ye, 2018. "Composites with Excellent Insulation and High Adaptability for Lightweight Envelopes," Energies, MDPI, vol. 12(1), pages 1-10, December.
    13. Chen, Zhou & Chen, Zhaofeng & Yang, Zhaogang & Hu, Jiaming & Yang, Yong & Chang, Lingqian & Lee, L. James & Xu, Tengzhou, 2015. "Preparation and characterization of vacuum insulation panels with super-stratified glass fiber core material," Energy, Elsevier, vol. 93(P1), pages 945-954.
    14. Kylili, Angeliki & Fokaides, Paris A. & Christou, Petros & Kalogirou, Soteris A., 2014. "Infrared thermography (IRT) applications for building diagnostics: A review," Applied Energy, Elsevier, vol. 134(C), pages 531-549.
    15. Zhou, Yuekuan & Zheng, Siqian, 2020. "Uncertainty study on thermal and energy performances of a deterministic parameters based optimal aerogel glazing system using machine-learning method," Energy, Elsevier, vol. 193(C).
    16. Jiang, Wei & Jin, Yang & Liu, Gongliang & Li, Qing & Li, Dong, 2023. "Passive nearly zero energy retrofits of rammed earth rural residential buildings based on energy efficiency and cost-effectiveness analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    17. Wang, Y. & Mauree, D. & Sun, Q. & Lin, H. & Scartezzini, J.L. & Wennersten, R., 2020. "A review of approaches to low-carbon transition of high-rise residential buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    18. Brunetti, Giuseppe & Porti, Michele & Piro, Patrizia, 2018. "Multi-level numerical and statistical analysis of the hygrothermal behavior of a non-vegetated green roof in a mediterranean climate," Applied Energy, Elsevier, vol. 221(C), pages 204-219.
    19. Aldona Standar & Agnieszka Kozera & Łukasz Satoła, 2021. "The Importance of Local Investments Co-Financed by the European Union in the Field of Renewable Energy Sources in Rural Areas of Poland," Energies, MDPI, vol. 14(2), pages 1-23, January.
    20. Yuan, Jun & Nian, Victor & Su, Bin & Meng, Qun, 2017. "A simultaneous calibration and parameter ranking method for building energy models," Applied Energy, Elsevier, vol. 206(C), pages 657-666.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2000-:d:121167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.