Impact of experimental pressure and temperature on semiclathrate hydrate formation for pre-combustion capture of CO2 using tetra-n-butyl ammonium nitrate
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2014.10.033
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ho, Leong Chuan & Babu, Ponnivalavan & Kumar, Rajnish & Linga, Praveen, 2013. "HBGS (hydrate based gas separation) process for carbon dioxide capture employing an unstirred reactor with cyclopentane," Energy, Elsevier, vol. 63(C), pages 252-259.
- Veluswamy, Hari Prakash & Kumar, Rajnish & Linga, Praveen, 2014. "Hydrogen storage in clathrate hydrates: Current state of the art and future directions," Applied Energy, Elsevier, vol. 122(C), pages 112-132.
- Babu, Ponnivalavan & Kumar, Rajnish & Linga, Praveen, 2013. "Pre-combustion capture of carbon dioxide in a fixed bed reactor using the clathrate hydrate process," Energy, Elsevier, vol. 50(C), pages 364-373.
- Yang, Mingjun & Song, Yongchen & Jiang, Lanlan & Zhao, Yuechao & Ruan, Xuke & Zhang, Yi & Wang, Shanrong, 2014. "Hydrate-based technology for CO2 capture from fossil fuel power plants," Applied Energy, Elsevier, vol. 116(C), pages 26-40.
- Li, Xiao-Sen & Xu, Chun-Gang & Chen, Zhao-Yang & Wu, Hui-Jie, 2011. "Hydrate-based pre-combustion carbon dioxide capture process in the system with tetra-n-butyl ammonium bromide solution in the presence of cyclopentane," Energy, Elsevier, vol. 36(3), pages 1394-1403.
- Shi, X.J. & Zhang, P., 2013. "A comparative study of different methods for the generation of tetra-n-butyl ammonium bromide clathrate hydrate slurry in a cold storage air-conditioning system," Applied Energy, Elsevier, vol. 112(C), pages 1393-1402.
- Zhang, P. & Ma, Z.W. & Wang, R.Z., 2010. "An overview of phase change material slurries: MPCS and CHS," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 598-614, February.
- Xu, Chun-Gang & Zhang, Shao-Hong & Cai, Jing & Chen, Zhao-Yang & Li, Xiao-Sen, 2013. "CO2 (carbon dioxide) separation from CO2–H2 (hydrogen) gas mixtures by gas hydrates in TBAB (tetra-n-butyl ammonium bromide) solution and Raman spectroscopic analysis," Energy, Elsevier, vol. 59(C), pages 719-725.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
- Liu, Fa-Ping & Li, Ai-Rong & Wang, Cheng & Ma, Yu-Ling, 2023. "Controlling and tuning CO2 hydrate nucleation and growth by metal-based ionic liquids," Energy, Elsevier, vol. 269(C).
- Renault-Crispo, Jean-Sébastien & Coulombe, Sylvain & Servio, Phillip, 2017. "Kinetics of carbon dioxide gas hydrates with tetrabutylammonium bromide and functionalized multi-walled carbon nanotubes," Energy, Elsevier, vol. 128(C), pages 414-420.
- Sergey Misyura & Pavel Strizhak & Anton Meleshkin & Vladimir Morozov & Olga Gaidukova & Nikita Shlegel & Maria Shkola, 2023. "A Review of Gas Capture and Liquid Separation Technologies by CO 2 Gas Hydrate," Energies, MDPI, vol. 16(8), pages 1-20, April.
- Theo, Wai Lip & Lim, Jeng Shiun & Hashim, Haslenda & Mustaffa, Azizul Azri & Ho, Wai Shin, 2016. "Review of pre-combustion capture and ionic liquid in carbon capture and storage," Applied Energy, Elsevier, vol. 183(C), pages 1633-1663.
- Zheng, Junjie & Bhatnagar, Krittika & Khurana, Maninder & Zhang, Peng & Zhang, Bao-Yong & Linga, Praveen, 2018. "Semiclathrate based CO2 capture from fuel gas mixture at ambient temperature: Effect of concentrations of tetra-n-butylammonium fluoride (TBAF) and kinetic additives," Applied Energy, Elsevier, vol. 217(C), pages 377-389.
- Babu, Ponnivalavan & Ong, Hong Wen Nelson & Linga, Praveen, 2016. "A systematic kinetic study to evaluate the effect of tetrahydrofuran on the clathrate process for pre-combustion capture of carbon dioxide," Energy, Elsevier, vol. 94(C), pages 431-442.
- Liu, Fa-Ping & Li, Ai-Rong & Qing, Sheng-Lan & Luo, Ze-Dong & Ma, Yu-Ling, 2022. "Formation kinetics, mechanism of CO2 hydrate and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
- Zheng, Junjie & Zhang, Peng & Linga, Praveen, 2017. "Semiclathrate hydrate process for pre-combustion capture of CO2 at near ambient temperatures," Applied Energy, Elsevier, vol. 194(C), pages 267-278.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Babu, Ponnivalavan & Linga, Praveen & Kumar, Rajnish & Englezos, Peter, 2015. "A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture," Energy, Elsevier, vol. 85(C), pages 261-279.
- Veluswamy, Hari Prakash & Kumar, Asheesh & Premasinghe, Kulesha & Linga, Praveen, 2017. "Effect of guest gas on the mixed tetrahydrofuran hydrate kinetics in a quiescent system," Applied Energy, Elsevier, vol. 207(C), pages 573-583.
- Ma, Z.W. & Zhang, P. & Bao, H.S. & Deng, S., 2016. "Review of fundamental properties of CO2 hydrates and CO2 capture and separation using hydration method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1273-1302.
- Wang, Pengfei & Chen, Yiqi & Teng, Ying & An, Senyou & Li, Yun & Han, Meng & Yuan, Bao & Shen, Suling & Chen, Bin & Han, Songbai & Zhu, Jinlong & Zhu, Jianbo & Zhao, Yusheng & Xie, Heping, 2024. "A comprehensive review of hydrogen purification using a hydrate-based method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).
- Babu, Ponnivalavan & Ong, Hong Wen Nelson & Linga, Praveen, 2016. "A systematic kinetic study to evaluate the effect of tetrahydrofuran on the clathrate process for pre-combustion capture of carbon dioxide," Energy, Elsevier, vol. 94(C), pages 431-442.
- Babu, Ponnivalavan & Ho, Chie Yin & Kumar, Rajnish & Linga, Praveen, 2014. "Enhanced kinetics for the clathrate process in a fixed bed reactor in the presence of liquid promoters for pre-combustion carbon dioxide capture," Energy, Elsevier, vol. 70(C), pages 664-673.
- Wang, Xiaolin & Dennis, Mike, 2016. "Characterisation of thermal properties and charging performance of semi-clathrate hydrates for cold storage applications," Applied Energy, Elsevier, vol. 167(C), pages 59-69.
- Yang, Mingjun & Zhou, Hang & Wang, Pengfei & Song, Yongchen, 2018. "Effects of additives on continuous hydrate-based flue gas separation," Applied Energy, Elsevier, vol. 221(C), pages 374-385.
- Yang, Mingjun & Song, Yongchen & Jiang, Lanlan & Liu, Weiguo & Dou, Binlin & Jing, Wen, 2014. "Effects of operating mode and pressure on hydrate-based desalination and CO2 capture in porous media," Applied Energy, Elsevier, vol. 135(C), pages 504-511.
- Theo, Wai Lip & Lim, Jeng Shiun & Hashim, Haslenda & Mustaffa, Azizul Azri & Ho, Wai Shin, 2016. "Review of pre-combustion capture and ionic liquid in carbon capture and storage," Applied Energy, Elsevier, vol. 183(C), pages 1633-1663.
- Li, Ze-Yu & Xia, Zhi-Ming & Chen, Zhao-Yang & Li, Xiao-Sen & Xu, Chun-Gang & Yan, Ran, 2019. "The plateau effects and crystal transition study in Tetrahydrofuran (THF)/CO2/H2 hydrate formation processes," Applied Energy, Elsevier, vol. 238(C), pages 195-201.
- Zheng, Junjie & Bhatnagar, Krittika & Khurana, Maninder & Zhang, Peng & Zhang, Bao-Yong & Linga, Praveen, 2018. "Semiclathrate based CO2 capture from fuel gas mixture at ambient temperature: Effect of concentrations of tetra-n-butylammonium fluoride (TBAF) and kinetic additives," Applied Energy, Elsevier, vol. 217(C), pages 377-389.
- Xie, Yan & Zhu, Yu-Jie & Cheng, Li-Wei & Zheng, Tao & Zhong, Jin-Rong & Xiao, Peng & Sun, Chang-Yu & Chen, Guang-Jin & Feng, Jing-Chun, 2023. "The coexistence of multiple hydrates triggered by varied H2 molecule occupancy during CO2/H2 hydrate dissociation," Energy, Elsevier, vol. 262(PA).
- Yu, Yi-Song & Zhang, Qing-Zong & Li, Xiao-Sen & Chen, Chang & Zhou, Shi-Dong, 2020. "Kinetics, compositions and structures of carbon dioxide/hydrogen hydrate formation in the presence of cyclopentane," Applied Energy, Elsevier, vol. 265(C).
- Cai, Jing & Zhang, Yu & Xu, Chun-Gang & Xia, Zhi-Ming & Chen, Zhao-Yang & Li, Xiao-Sen, 2018. "Raman spectroscopic studies on carbon dioxide separation from fuel gas via clathrate hydrate in the presence of tetrahydrofuran," Applied Energy, Elsevier, vol. 214(C), pages 92-102.
- Yang, Mingjun & Jing, Wen & Zhao, Jiafei & Ling, Zheng & Song, Yongchen, 2016. "Promotion of hydrate-based CO2 capture from flue gas by additive mixtures (THF (tetrahydrofuran) + TBAB (tetra-n-butyl ammonium bromide))," Energy, Elsevier, vol. 106(C), pages 546-553.
- Jyoti Shanker Pandey & Yousef Jouljamal Daas & Adam Paul Karcz & Nicolas von Solms, 2020. "Enhanced Hydrate-Based Geological CO 2 Capture and Sequestration as a Mitigation Strategy to Address Climate Change," Energies, MDPI, vol. 13(21), pages 1-28, October.
- Xu, Chun-Gang & Xie, Wen-Jun & Chen, Guo-Shu & Yan, Xiao-Xue & Cai, Jing & Chen, Zhao-Yang & Li, Xiao-Sen, 2020. "Study on the influencing factors of gas consumption in hydrate-based CO2 separation in the presence of CP by Raman analysis," Energy, Elsevier, vol. 198(C).
- Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
- Foroutan, Shima & Mohsenzade, Hanie & Dashti, Ali & Roosta, Hadi, 2021. "New insights into the evaluation of kinetic hydrate inhibitors and energy consumption in rocking and stirred cells," Energy, Elsevier, vol. 218(C).
More about this item
Keywords
Gas hydrates; Semi-clathrates; Carbon dioxide capture; Clathrate process;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:78:y:2014:i:c:p:458-464. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.