IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5385-d428600.html
   My bibliography  Save this article

Remuneration of Distribution Grids for Enhanced Regenerative Electricity Deployment—An Analysis and Model for the Analysis of Grid Structures in Southern Germany Using Linear Programming

Author

Listed:
  • Tobias Rösch

    (Department of Mechanical and Process Engineering, Offenburg University of Applied Sciences, Badstr. 24, 77652 Offenburg, Germany)

  • Peter Treffinger

    (Department of Mechanical and Process Engineering, Offenburg University of Applied Sciences, Badstr. 24, 77652 Offenburg, Germany)

  • Barbara Koch

    (Forest Research Institute Baden-Württemberg (FVA), 79106 Freiburg, Germany)

Abstract

Ecological concerns on the climatic effects of the emissions from electricity production stipulate the remuneration of electricity grids to accept growing amounts of intermittent regenerative electricity feed-in from wind and solar power. Germany’s eager political target to double regenerative electricity production by 2030 puts pressure on grid operators to adapt and restructure their transmission and distribution grids. The ability of local distribution grids to operate autonomous of transmission grid supply is essential to stabilize electricity supply at the level of German federal states. Although congestion management and collaboration at the distribution system operator (DSO) level are promising approaches, relatively few studies address this issue. This study presents a methodology to assess the electric energy balance for the low-voltage grids in the German federal state of Baden-Württemberg, assuming the typical load curves and the interchange potential among local distribution grids by means of linear programming of the supply function and for typical seasonal electricity demands. The model can make a statement about the performance and development requirements for grid architecture for scenarios in 2035 and 2050 when regenerative energies will—according to present legislation—account for more than half of Germany’s electricity supply. The study details the amendment to Baden-Württemberg’s electricity grid required to fit the system to the requirements of regenerative electricity production. The suggested model for grid analysis can be used in further German regions and internationally to systematically remunerate electricity grids for the acceptance of larger amounts of regenerative electricity inflows. This empirical study closes the research gap of assessing the interchange potential among DSO and considers usual power loads and simultaneously usual electricity inflows.

Suggested Citation

  • Tobias Rösch & Peter Treffinger & Barbara Koch, 2020. "Remuneration of Distribution Grids for Enhanced Regenerative Electricity Deployment—An Analysis and Model for the Analysis of Grid Structures in Southern Germany Using Linear Programming," Energies, MDPI, vol. 13(20), pages 1-26, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5385-:d:428600
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5385/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5385/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lopes Ferreira, H. & Costescu, A. & L'Abbate, A. & Minnebo, P. & Fulli, G., 2011. "Distributed generation and distribution market diversity in Europe," Energy Policy, Elsevier, vol. 39(9), pages 5561-5571, September.
    2. Tobias Rösch & Peter Treffinger, 2019. "Cluster Analysis of Distribution Grids in Baden-Württemberg," Energies, MDPI, vol. 12(20), pages 1-25, October.
    3. Benoît Bletterie & Serdar Kadam & Herwig Renner, 2018. "On the Classification of Low Voltage Feeders for Network Planning and Hosting Capacity Studies," Energies, MDPI, vol. 11(3), pages 1-23, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tobias Rösch & Peter Treffinger, 2019. "Cluster Analysis of Distribution Grids in Baden-Württemberg," Energies, MDPI, vol. 12(20), pages 1-25, October.
    2. Retière, N. & Sidqi, Y. & Frankhauser, P., 2022. "A steady-state analysis of distribution networks by diffusion-limited-aggregation and multifractal geometry," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    3. Furmankiewicz, Marek & Hewitt, Richard J. & Kazak, Jan K., 2021. "Can rural stakeholders drive the low-carbon transition? Analysis of climate-related activities planned in local development strategies in Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. De Rosa, Mattia & Gainsford, Kenneth & Pallonetto, Fabiano & Finn, Donal P., 2022. "Diversification, concentration and renewability of the energy supply in the European Union," Energy, Elsevier, vol. 253(C).
    5. Ma, Chenjie & Menke, Jan-Hendrik & Dasenbrock, Johannes & Braun, Martin & Haslbeck, Matthias & Schmid, Karl-Heinz, 2019. "Evaluation of energy losses in low voltage distribution grids with high penetration of distributed generation," Applied Energy, Elsevier, vol. 256(C).
    6. IqtiyaniIlham, Nur & Hasanuzzaman, M. & Hosenuzzaman, M., 2017. "European smart grid prospects, policies, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 776-790.
    7. Balta-Ozkan, Nazmiye & Davidson, Rosemary & Bicket, Martha & Whitmarsh, Lorraine, 2013. "The development of smart homes market in the UK," Energy, Elsevier, vol. 60(C), pages 361-372.
    8. Poppen, Silvia, 2014. "Auswirkungen dezentraler Erzeugungsanlagen auf das Stromversorgungssystem: Ausgestaltungsmöglichkeiten der Bereitstellung neuer Erzeugungsanlagen," Arbeitspapiere 146, University of Münster, Institute for Cooperatives.
    9. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    10. Boon, Frank Pieter & Dieperink, Carel, 2014. "Local civil society based renewable energy organisations in the Netherlands: Exploring the factors that stimulate their emergence and development," Energy Policy, Elsevier, vol. 69(C), pages 297-307.
    11. Chalvatzis, Konstantinos J. & Ioannidis, Alexis, 2017. "Energy supply security in the EU: Benchmarking diversity and dependence of primary energy," Applied Energy, Elsevier, vol. 207(C), pages 465-476.
    12. Daniel-Leon Schultis, 2019. "Comparison of Local Volt/var Control Strategies for PV Hosting Capacity Enhancement of Low Voltage Feeders," Energies, MDPI, vol. 12(8), pages 1-27, April.
    13. Cambini, Carlo & Meletiou, Alexis & Bompard, Ettore & Masera, Marcelo, 2016. "Market and regulatory factors influencing smart-grid investment in Europe: Evidence from pilot projects and implications for reform," Utilities Policy, Elsevier, vol. 40(C), pages 36-47.
    14. Miha Grabner & Andrej Souvent & Nermin Suljanović & Andrej Košir & Boštjan Blažič, 2019. "Probabilistic Methodology for Calculating PV Hosting Capacity in LV Networks Using Actual Building Roof Data," Energies, MDPI, vol. 12(21), pages 1-15, October.
    15. Ruiz-Romero, Salvador & Colmenar-Santos, Antonio & Gil-Ortego, Rosario & Molina-Bonilla, Antonio, 2013. "Distributed generation: The definitive boost for renewable energy in Spain," Renewable Energy, Elsevier, vol. 53(C), pages 354-364.
    16. Knezović, Katarina & Marinelli, Mattia & Zecchino, Antonio & Andersen, Peter Bach & Traeholt, Chresten, 2017. "Supporting involvement of electric vehicles in distribution grids: Lowering the barriers for a proactive integration," Energy, Elsevier, vol. 134(C), pages 458-468.
    17. Abouzar Estebsari & Luca Barbierato & Alireza Bahmanyar & Lorenzo Bottaccioli & Enrico Macii & Edoardo Patti, 2019. "A SGAM-Based Test Platform to Develop a Scheme for Wide Area Measurement-Free Monitoring of Smart Grids under High PV Penetration," Energies, MDPI, vol. 12(8), pages 1-27, April.
    18. Gómez, Antonio & Dopazo, César & Fueyo, Norberto, 2015. "The future of energy in Uzbekistan," Energy, Elsevier, vol. 85(C), pages 329-338.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5385-:d:428600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.