IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v195y2024ics0301421524003884.html
   My bibliography  Save this article

Estimating electrical distribution network length and capital investment needs from real-world topologies and land cover data

Author

Listed:
  • Rüde, Lenard
  • Wussow, Moritz
  • Heleno, Miguel
  • Gust, Gunther
  • Neumann, Dirk

Abstract

Green technologies such as solar photovoltaic systems and electric vehicles play a fundamental role in the global decarbonization effort. To enable their diffusion, electricity distribution networks need to be upgraded, which is a complex and expensive endeavor. However, utilities face budgetary constraints and seek to reduce planning uncertainty. Here, we utilize 7,527 real-world grid topologies and land cover data to develop a model for estimating conductor and capital investment needs for electrifying a specific area. Our work yields three main contributions: First, we demonstrate the important role of land cover data in power line planning. We show that, for medium and large networks, distinct methodologies are needed due to the significant impact of land cover, particularly buildings and roads. Second, we introduce a parsimonious model of power line length and identify the number of consumption points as the primary determinant of network investment costs. Third, we present a cost assessment model tailored for regulators and investors, offering valuable insights for network planning, policymaking, due diligence, and research. Our work highlights the importance of combining land cover data and operations research algorithms in distribution network planning and provides policymakers with a tool to ensure cost-efficient network expansion.

Suggested Citation

  • Rüde, Lenard & Wussow, Moritz & Heleno, Miguel & Gust, Gunther & Neumann, Dirk, 2024. "Estimating electrical distribution network length and capital investment needs from real-world topologies and land cover data," Energy Policy, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:enepol:v:195:y:2024:i:c:s0301421524003884
    DOI: 10.1016/j.enpol.2024.114368
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421524003884
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2024.114368?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steven Quiring & Laiyin Zhu & Seth Guikema, 2011. "Importance of soil and elevation characteristics for modeling hurricane-induced power outages," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(1), pages 365-390, July.
    2. Moritz Wussow & Chad Zanocco & Zhecheng Wang & Rajanie Prabha & June Flora & Dirk Neumann & Arun Majumdar & Ram Rajagopal, 2024. "Exploring the potential of non-residential solar to tackle energy injustice," Nature Energy, Nature, vol. 9(6), pages 654-663, June.
    3. Rosenfelder, Markus & Wussow, Moritz & Gust, Gunther & Cremades, Roger & Neumann, Dirk, 2021. "Predicting residential electricity consumption using aerial and street view images," Applied Energy, Elsevier, vol. 301(C).
    4. Kuosmanen, Timo & Saastamoinen, Antti & Sipiläinen, Timo, 2013. "What is the best practice for benchmark regulation of electricity distribution? Comparison of DEA, SFA and StoNED methods," Energy Policy, Elsevier, vol. 61(C), pages 740-750.
    5. Andor, Mark A. & Parmeter, Christopher & Sommer, Stephan, 2019. "Combining uncertainty with uncertainty to get certainty? Efficiency analysis for regulation purposes," European Journal of Operational Research, Elsevier, vol. 274(1), pages 240-252.
    6. L. Kruitwagen & K. T. Story & J. Friedrich & L. Byers & S. Skillman & C. Hepburn, 2021. "A global inventory of photovoltaic solar energy generating units," Nature, Nature, vol. 598(7882), pages 604-610, October.
    7. Jichao He & David W. Wanik & Brian M. Hartman & Emmanouil N. Anagnostou & Marina Astitha & Maria E. B. Frediani, 2017. "Nonparametric Tree‐Based Predictive Modeling of Storm Outages on an Electric Distribution Network," Risk Analysis, John Wiley & Sons, vol. 37(3), pages 441-458, March.
    8. Kuosmanen, Timo, 2012. "Stochastic semi-nonparametric frontier estimation of electricity distribution networks: Application of the StoNED method in the Finnish regulatory model," Energy Economics, Elsevier, vol. 34(6), pages 2189-2199.
    9. Sedghi, Mahdi & Ahmadian, Ali & Aliakbar-Golkar, Masoud, 2016. "Assessment of optimization algorithms capability in distribution network planning: Review, comparison and modification techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 415-434.
    10. Haney, Aoife Brophy & Pollitt, Michael G., 2009. "Efficiency analysis of energy networks: An international survey of regulators," Energy Policy, Elsevier, vol. 37(12), pages 5814-5830, December.
    11. D. Wanik & E. Anagnostou & B. Hartman & M. Frediani & M. Astitha, 2015. "Storm outage modeling for an electric distribution network in Northeastern USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 1359-1384, November.
    12. McDonald, Jim, 2008. "Adaptive intelligent power systems: Active distribution networks," Energy Policy, Elsevier, vol. 36(12), pages 4346-4351, December.
    13. Benoît Bletterie & Serdar Kadam & Herwig Renner, 2018. "On the Classification of Low Voltage Feeders for Network Planning and Hosting Capacity Studies," Energies, MDPI, vol. 11(3), pages 1-23, March.
    14. Abeysinghe, Sathsara & Wu, Jianzhong & Sooriyabandara, Mahesh & Abeysekera, Muditha & Xu, Tao & Wang, Chengshan, 2018. "Topological properties of medium voltage electricity distribution networks," Applied Energy, Elsevier, vol. 210(C), pages 1101-1112.
    15. Becker, Sarah & Frew, Bethany A. & Andresen, Gorm B. & Zeyer, Timo & Schramm, Stefan & Greiner, Martin & Jacobson, Mark Z., 2014. "Features of a fully renewable US electricity system: Optimized mixes of wind and solar PV and transmission grid extensions," Energy, Elsevier, vol. 72(C), pages 443-458.
    16. Ferrari, Simone & Zagarella, Federica & Caputo, Paola & Bonomolo, Marina, 2019. "Assessment of tools for urban energy planning," Energy, Elsevier, vol. 176(C), pages 544-551.
    17. Fortes, Patrícia & Simoes, Sofia G. & Gouveia, João Pedro & Seixas, Júlia, 2019. "Electricity, the silver bullet for the deep decarbonisation of the energy system? Cost-effectiveness analysis for Portugal," Applied Energy, Elsevier, vol. 237(C), pages 292-303.
    18. Colak, H. Ebru & Memisoglu, Tugba & Gercek, Yasin, 2020. "Optimal site selection for solar photovoltaic (PV) power plants using GIS and AHP: A case study of Malatya Province, Turkey," Renewable Energy, Elsevier, vol. 149(C), pages 565-576.
    19. Goel, Asvin & Meisel, Frank, 2013. "Workforce routing and scheduling for electricity network maintenance with downtime minimization," European Journal of Operational Research, Elsevier, vol. 231(1), pages 210-228.
    20. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    21. Konadu, D. Dennis & Mourão, Zenaida Sobral & Allwood, Julian M. & Richards, Keith S. & Kopec, Grant & McMahon, Richard & Fenner, Richard, 2015. "Land use implications of future energy system trajectories—The case of the UK 2050 Carbon Plan," Energy Policy, Elsevier, vol. 86(C), pages 328-337.
    22. Fürsch, Michaela & Hagspiel, Simeon & Jägemann, Cosima & Nagl, Stephan & Lindenberger, Dietmar & Tröster, Eckehard, 2013. "The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050," Applied Energy, Elsevier, vol. 104(C), pages 642-652.
    23. Lei, Yang & Wang, Dan & Jia, Hongjie & Li, Jiaxi & Chen, Jingcheng & Li, Jingru & Yang, Zhihong, 2021. "Multi-stage stochastic planning of regional integrated energy system based on scenario tree path optimization under long-term multiple uncertainties," Applied Energy, Elsevier, vol. 300(C).
    24. Welsch, Manuel & Deane, Paul & Howells, Mark & Ó Gallachóir, Brian & Rogan, Fionn & Bazilian, Morgan & Rogner, Hans-Holger, 2014. "Incorporating flexibility requirements into long-term energy system models – A case study on high levels of renewable electricity penetration in Ireland," Applied Energy, Elsevier, vol. 135(C), pages 600-615.
    25. Smyl, Slawek & Hua, N. Grace, 2019. "Machine learning methods for GEFCom2017 probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1424-1431.
    26. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    27. Burleyson, Casey D. & Voisin, Nathalie & Taylor, Z. Todd & Xie, Yulong & Kraucunas, Ian, 2018. "Simulated building energy demand biases resulting from the use of representative weather stations," Applied Energy, Elsevier, vol. 209(C), pages 516-528.
    28. Gust, Gunther & Schlüter, Alexander & Feuerriegel, Stefan & Úbeda, Ignacio & Lee, Jonathan T. & Neumann, Dirk, 2024. "Designing electricity distribution networks: The impact of demand coincidence," European Journal of Operational Research, Elsevier, vol. 315(1), pages 271-288.
    29. Fathi, Soheil & Srinivasan, Ravi & Fenner, Andriel & Fathi, Sahand, 2020. "Machine learning applications in urban building energy performance forecasting: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    30. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    31. Ameling, Justus & Gust, Gunther, 2024. "Automated feeder routing for underground electricity distribution networks based on aerial images," European Journal of Operational Research, Elsevier, vol. 318(2), pages 629-641.
    32. Nolting, Lars & Schuller, Vanessa & Gaumnitz, Felix & Praktiknjo, Aaron, 2019. "Incentivizing timely investments in electrical grids: Analysis of the amendment of the German distribution grid regulation," Energy Policy, Elsevier, vol. 132(C), pages 754-763.
    33. Comodi, G. & Cioccolanti, L. & Gargiulo, M., 2012. "Municipal scale scenario: Analysis of an Italian seaside town with MarkAL-TIMES," Energy Policy, Elsevier, vol. 41(C), pages 303-315.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hughes, William & Zhang, Wei & Cerrai, Diego & Bagtzoglou, Amvrossios & Wanik, David & Anagnostou, Emmanouil, 2022. "A Hybrid Physics-Based and Data-Driven Model for Power Distribution System Infrastructure Hardening and Outage Simulation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    2. Andor, Mark A. & Parmeter, Christopher & Sommer, Stephan, 2019. "Combining uncertainty with uncertainty to get certainty? Efficiency analysis for regulation purposes," European Journal of Operational Research, Elsevier, vol. 274(1), pages 240-252.
    3. Agrell, Per J. & Brea-Solís, Humberto, 2017. "Capturing heterogeneity in electricity distribution operations: A critical review of latent class modelling," Energy Policy, Elsevier, vol. 104(C), pages 361-372.
    4. Duras, Toni & Javed, Farrukh & Månsson, Kristofer & Sjölander, Pär & Söderberg, Magnus, 2023. "Using machine learning to select variables in data envelopment analysis: Simulations and application using electricity distribution data," Energy Economics, Elsevier, vol. 120(C).
    5. Berk A. Alpay & David Wanik & Peter Watson & Diego Cerrai & Guannan Liang & Emmanouil Anagnostou, 2020. "Dynamic Modeling of Power Outages Caused by Thunderstorms," Forecasting, MDPI, vol. 2(2), pages 1-12, May.
    6. Saastamoinen, Antti & Kuosmanen, Timo, 2016. "Quality frontier of electricity distribution: Supply security, best practices, and underground cabling in Finland," Energy Economics, Elsevier, vol. 53(C), pages 281-292.
    7. Mark Andor & Christopher F. Parmeter & Stephan Sommer, 2018. "Combining Uncertainty with Uncertainty to Get Certainty? Efficiency Analysis for Regulation Purposes," Working Papers 2018-02, University of Miami, Department of Economics.
    8. Nieswand, Maria & Seifert, Stefan, 2018. "Environmental factors in frontier estimation – A Monte Carlo analysis," European Journal of Operational Research, Elsevier, vol. 265(1), pages 133-148.
    9. Hughes, William & Zhang, Wei & Bagtzoglou, Amvrossios C. & Wanik, David & Pensado, Osvaldo & Yuan, Hao & Zhang, Jintao, 2021. "Damage modeling framework for resilience hardening strategy for overhead power distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    10. Saastamoinen, Antti & Bjørndal, Endre & Bjørndal, Mette, 2017. "Specification of merger gains in the Norwegian electricity distribution industry," Energy Policy, Elsevier, vol. 102(C), pages 96-107.
    11. Maria Nieswand & Stefan Seifert, 2016. "Operational Conditions in Regulatory Benchmarking Models: A Monte Carlo Analysis," Discussion Papers of DIW Berlin 1585, DIW Berlin, German Institute for Economic Research.
    12. Saastamoinen, Antti & Bjørndal, Endre & Bjørndal, Mette, 2016. "Specification of merger gains in the Norwegian electricity distribution industry," Discussion Papers 2016/7, Norwegian School of Economics, Department of Business and Management Science.
    13. Kuosmanen, Timo & Johnson, Andrew, 2017. "Modeling joint production of multiple outputs in StoNED: Directional distance function approach," European Journal of Operational Research, Elsevier, vol. 262(2), pages 792-801.
    14. Zhang, Yuyang & Ma, Wenke & Du, Pengcheng & Li, Shaoting & Gao, Ke & Wang, Yuxuan & Liu, Yifei & Zhang, Bo & Yu, Dingyi & Zhang, Jingyi & Li, Yan, 2024. "Powering the future: Unraveling residential building characteristics for accurate prediction of total electricity consumption during summer heat," Applied Energy, Elsevier, vol. 376(PA).
    15. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    16. Dennis Dreier & Mark Howells, 2019. "OSeMOSYS-PuLP: A Stochastic Modeling Framework for Long-Term Energy Systems Modeling," Energies, MDPI, vol. 12(7), pages 1-26, April.
    17. Dimitris N. Trakas & Mathaios Panteli & Nikos D. Hatziargyriou & Pierluigi Mancarella, 2019. "Spatial Risk Analysis of Power Systems Resilience During Extreme Events," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 195-211, January.
    18. Julia Schaefer & Marcel Clermont, 2018. "Stochastic non-smooth envelopment of data for multi-dimensional output," Journal of Productivity Analysis, Springer, vol. 50(3), pages 139-154, December.
    19. Rita, Rui & Marques, Vitor & Bárbara, Diogo & Chaves, Inês & Macedo, Pedro & Moutinho, Victor & Pereira, Mariana, 2023. "Crossing non-parametric and parametric techniques for measuring the efficiency: Evidence from 65 European electricity Distribution System Operators," Energy, Elsevier, vol. 283(C).
    20. Ahmad, Tanveer & Madonski, Rafal & Zhang, Dongdong & Huang, Chao & Mujeeb, Asad, 2022. "Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:195:y:2024:i:c:s0301421524003884. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.