IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5341-d427558.html
   My bibliography  Save this article

Driving Mode Optimization for Hybrid Trucks Using Road and Traffic Preview Data

Author

Listed:
  • Yutao Chen

    (College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China)

  • Nazar Rozkvas

    (Lightyear, 5708 JZ Helmond, The Netherlands)

  • Mircea Lazar

    (Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands)

Abstract

This paper proposes a predictive driver coaching (PDC) system for fuel economy driving for hybrid electric trucks using upcoming static map and dynamic traffic data. Unlike traditional methods that optimize over engine torque and brake to obtain a speed profile, we propose to optimize over driving modes of trucks to achieve a trade-off between fuel consumption and trip time. The optimal driving mode is provided to the driver as a coaching recommendation. To obtain the optimal solution, the truck dynamics are firstly modeled as a hybrid controlled switching dynamical system with autonomous subsystems and then a hybrid optimal control problem (HOCP) is formulated. The problem is solved using an algorithm based on discrete hybrid minimum principle. A warm-start strategy to reduce algorithmic iterations is used by employing a shrinking horizon strategy. In addition, an extensive analysis of the proposed algorithm is provided. We prove that the the coasting mode is never optimal given the truck configuration and and we provide a guideline for tuning parameters to maintain the optimal mode sequence. Finally, the algorithm is validated using real-world data from baseline driving tests using a DAF hybrid truck. Significant reduction in fuel consumption is achieved when the data is perfectly available.

Suggested Citation

  • Yutao Chen & Nazar Rozkvas & Mircea Lazar, 2020. "Driving Mode Optimization for Hybrid Trucks Using Road and Traffic Preview Data," Energies, MDPI, vol. 13(20), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5341-:d:427558
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5341/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5341/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Feng & Zhang, Jian & Xu, Xing & Cai, Yingfeng & Zhou, Zhiguang & Sun, Xiaoqiang, 2019. "A comprehensive dynamic efficiency-enhanced energy management strategy for plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 247(C), pages 657-669.
    2. Bizon, Nicu, 2017. "Energy optimization of fuel cell system by using global extremum seeking algorithm," Applied Energy, Elsevier, vol. 206(C), pages 458-474.
    3. Xu, Yanzhi & Li, Hanyan & Liu, Haobing & Rodgers, Michael O. & Guensler, Randall L., 2017. "Eco-driving for transit: An effective strategy to conserve fuel and emissions," Applied Energy, Elsevier, vol. 194(C), pages 784-797.
    4. Pei, Huanxin & Hu, Xiaosong & Yang, Yalian & Tang, Xiaolin & Hou, Cong & Cao, Dongpu, 2018. "Configuration optimization for improving fuel efficiency of power split hybrid powertrains with a single planetary gear," Applied Energy, Elsevier, vol. 214(C), pages 103-116.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Dehua & Liu, Sheng & Cai, Yingfeng & Wang, Shaohua & Li, Haoran & Chen, Long, 2021. "Pontryagin’s minimum principle based fuzzy adaptive energy management for hybrid electric vehicle using real-time traffic information," Applied Energy, Elsevier, vol. 286(C).
    2. Liao, Peng & Tang, Tie-Qiao & Liu, Ronghui & Huang, Hai-Jun, 2021. "An eco-driving strategy for electric vehicle based on the powertrain," Applied Energy, Elsevier, vol. 302(C).
    3. Roberto Finesso & Omar Marello, 2022. "Calculation of Intake Oxygen Concentration through Intake CO 2 Measurement and Evaluation of Its Effect on Nitrogen Oxide Prediction Accuracy in a Heavy-Duty Diesel Engine," Energies, MDPI, vol. 15(1), pages 1-26, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geng, Wenran & Lou, Diming & Wang, Chen & Zhang, Tong, 2020. "A cascaded energy management optimization method of multimode power-split hybrid electric vehicles," Energy, Elsevier, vol. 199(C).
    2. Shi, Dehua & Liu, Sheng & Cai, Yingfeng & Wang, Shaohua & Li, Haoran & Chen, Long, 2021. "Pontryagin’s minimum principle based fuzzy adaptive energy management for hybrid electric vehicle using real-time traffic information," Applied Energy, Elsevier, vol. 286(C).
    3. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    4. Yang, Jian & Zhang, Tiezhu & Hong, Jichao & Zhang, Hongxin & Zhao, Qinghai & Meng, Zewen, 2021. "Research on driving control strategy and Fuzzy logic optimization of a novel mechatronics-electro-hydraulic power coupling electric vehicle," Energy, Elsevier, vol. 233(C).
    5. Bizon, Nicu, 2019. "Efficient fuel economy strategies for the Fuel Cell Hybrid Power Systems under variable renewable/load power profile," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Yuan, Weichang & Frey, H. Christopher, 2020. "Potential for metro rail energy savings and emissions reduction via eco-driving," Applied Energy, Elsevier, vol. 268(C).
    7. Bizon, Nicu, 2019. "Hybrid power sources (HPSs) for space applications: Analysis of PEMFC/Battery/SMES HPS under unknown load containing pulses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 14-37.
    8. Tang, Yanyan & Zhang, Qi & Li, Yaoming & Li, Hailong & Pan, Xunzhang & Mclellan, Benjamin, 2019. "The social-economic-environmental impacts of recycling retired EV batteries under reward-penalty mechanism," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    9. Ju, Fei & Zhuang, Weichao & Wang, Liangmo & Zhang, Zhe, 2020. "Comparison of four-wheel-drive hybrid powertrain configurations," Energy, Elsevier, vol. 209(C).
    10. Zhang, Bo & Zhang, Jiangyan & Shen, Tielong, 2022. "Optimal control design for comfortable-driving of hybrid electric vehicles in acceleration mode," Applied Energy, Elsevier, vol. 305(C).
    11. Guensler, Randall & Liu, Haobing & Xu, Xiaodan & Lu, Hongyu & Rodgers, Michael O., 2018. "MOVES-Matrix for High-Performance Emission Rate Model Applications," Institute of Transportation Studies, Working Paper Series qt3xp5z35t, Institute of Transportation Studies, UC Davis.
    12. Wenjian Yang & Changping Li, 2022. "Symmetry Detection and Topological Synthesis of Mechanisms of Powertrains," Energies, MDPI, vol. 15(13), pages 1-22, June.
    13. Panagiotis Fafoutellis & Eleni G. Mantouka & Eleni I. Vlahogianni, 2020. "Eco-Driving and Its Impacts on Fuel Efficiency: An Overview of Technologies and Data-Driven Methods," Sustainability, MDPI, vol. 13(1), pages 1-17, December.
    14. Zhang, Hao & Chen, Boli & Lei, Nuo & Li, Bingbing & Chen, Chaoyi & Wang, Zhi, 2024. "Coupled velocity and energy management optimization of connected hybrid electric vehicles for maximum collective efficiency," Applied Energy, Elsevier, vol. 360(C).
    15. Yang, Yalian & Li, Pengshuai & Pei, Huanxin & Zou, Yunge, 2022. "Design of all-wheel-drive power-split hybrid configuration schemes based on hierarchical topology graph theory," Energy, Elsevier, vol. 242(C).
    16. Massimiliano Passalacqua & Mauro Carpita & Serge Gavin & Mario Marchesoni & Matteo Repetto & Luis Vaccaro & Sébastien Wasterlain, 2019. "Supercapacitor Storage Sizing Analysis for a Series Hybrid Vehicle," Energies, MDPI, vol. 12(9), pages 1-15, May.
    17. Fafoutellis, Panagiotis & Mantouka, Eleni G. & Vlahogianni, Eleni I., 2022. "Acceptance of a Pay-How-You-Drive pricing scheme for city traffic: The case of Athens," Transportation Research Part A: Policy and Practice, Elsevier, vol. 156(C), pages 270-284.
    18. Zhang, LiPeng & Liu, Wei & Qi, BingNan, 2020. "Energy optimization of multi-mode coupling drive plug-in hybrid electric vehicles based on speed prediction," Energy, Elsevier, vol. 206(C).
    19. Guan Wang & Jintao Lai & Zhexi Lian & Zhen Zhang, 2023. "An Eco-Driving Strategy Considering Phase-Switch-Based Bus Lane Sharing," Sustainability, MDPI, vol. 15(9), pages 1-20, April.
    20. Banaja Mohanty & Rajvikram Madurai Elavarasan & Hany M. Hasanien & Elangovan Devaraj & Rania A. Turky & Rishi Pugazhendhi, 2022. "Parameters Identification of Proton Exchange Membrane Fuel Cell Model Based on the Lightning Search Algorithm," Energies, MDPI, vol. 15(21), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5341-:d:427558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.