IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v50y2012icp192-206.html
   My bibliography  Save this article

The potential of natural gas use including cogeneration in large-sized industry and commercial sector in Peru

Author

Listed:
  • Gonzales Palomino, Raul
  • Nebra, Silvia A.

Abstract

In recent years there have been several discussions on a greater use of natural gas nationwide. Moreover, there have been several announcements by the private and public sectors regarding the construction of new pipelines to supply natural gas to the Peruvian southern and central-north markets. This paper presents future scenarios for the use of natural gas in the large-sized industrial and commercial sectors of the country based on different hypotheses on developments in the natural gas industry, national economic growth, energy prices, technological changes and investment decisions. First, the paper estimates the market potential and characterizes the energy consumption. Then it makes a selection of technological alternatives for the use of natural gas, and it makes an energetic and economic analysis and economic feasibility. Finally, the potential use of natural gas is calculated through nine different scenarios. The natural gas use in cogeneration systems is presented as an alternative to contribute to the installed power capacity of the country. Considering the introduction of the cogeneration in the optimistic–advanced scenario and assuming that all of their conditions would be put into practice, in 2020, the share of the cogeneration in electricity production in Peru would be 9.9%.

Suggested Citation

  • Gonzales Palomino, Raul & Nebra, Silvia A., 2012. "The potential of natural gas use including cogeneration in large-sized industry and commercial sector in Peru," Energy Policy, Elsevier, vol. 50(C), pages 192-206.
  • Handle: RePEc:eee:enepol:v:50:y:2012:i:c:p:192-206
    DOI: 10.1016/j.enpol.2012.04.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142151200359X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.04.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amiri, Shahnaz & Trygg, Louise & Moshfegh, Bahram, 2009. "Assessment of the natural gas potential for heat and power generation in the County of Östergötland in Sweden," Energy Policy, Elsevier, vol. 37(2), pages 496-506, February.
    2. Andersen, Trude Berg & Nilsen, Odd Bjarte & Tveteras, Ragnar, 2011. "How is demand for natural gas determined across European industrial sectors?," Energy Policy, Elsevier, vol. 39(9), pages 5499-5508, September.
    3. Schwob, Marcelo Rousseau Valença & Henriques Jr., Maurício & Szklo, Alexandre, 2009. "Technical potential for developing natural gas use in the Brazilian red ceramic industry," Applied Energy, Elsevier, vol. 86(9), pages 1524-1531, September.
    4. Campos Celador, A. & Erkoreka, A. & Martin Escudero, K. & Sala, J.M., 2011. "Feasibility of small-scale gas engine-based residential cogeneration in Spain," Energy Policy, Elsevier, vol. 39(6), pages 3813-3821, June.
    5. Szklo, Alexandre Salem & Soares, Jeferson Borghetti & Tolmasquim, Mauricio Tiomno, 2004. "Economic potential of natural gas-fired cogeneration--analysis of Brazil's chemical industry," Energy Policy, Elsevier, vol. 32(12), pages 1415-1428, August.
    6. Jiang, BinBin & Wenying, Chen & Yuefeng, Yu & Lemin, Zeng & Victor, David, 2008. "The future of natural gas consumption in Beijing, Guangdong and Shanghai: An assessment utilizing MARKAL," Energy Policy, Elsevier, vol. 36(9), pages 3286-3299, September.
    7. Frota, Willamy M. & Sá, José Alberto S. & Moraes, Sinfrônio S.B. & Rocha, Brígida R.P. & Ismail, Kamal A.R., 2010. "Natural gas: The option for a sustainable development and energy in the state of Amazonas," Energy Policy, Elsevier, vol. 38(7), pages 3830-3836, July.
    8. Lemar, Paul L., 2001. "The potential impact of policies to promote combined heat and power in US industry," Energy Policy, Elsevier, vol. 29(14), pages 1243-1254, November.
    9. Hinnells, Mark, 2008. "Combined heat and power in industry and buildings," Energy Policy, Elsevier, vol. 36(12), pages 4522-4526, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco Calise & Francesco Liberato Cappiello & Massimo Dentice d’Accadia & Luigi Libertini & Maria Vicidomini, 2020. "Dynamic Simulation and Thermoeconomic Analysis of a Trigeneration System in a Hospital Application," Energies, MDPI, vol. 13(14), pages 1-18, July.
    2. Manuel Raul Pelaez-Samaniego & Juan L. Espinoza & José Jara-Alvear & Pablo Arias-Reyes & Fernando Maldonado-Arias & Patricia Recalde-Galindo & Pablo Rosero & Tsai Garcia-Perez, 2020. "Potential and Impacts of Cogeneration in Tropical Climate Countries: Ecuador as a Case Study," Energies, MDPI, vol. 13(20), pages 1-26, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cho, Woojin & Lee, Kwan-Soo, 2014. "A simple sizing method for combined heat and power units," Energy, Elsevier, vol. 65(C), pages 123-133.
    2. Howard, B. & Modi, V., 2017. "Examination of the optimal operation of building scale combined heat and power systems under disparate climate and GHG emissions rates," Applied Energy, Elsevier, vol. 185(P1), pages 280-293.
    3. Zhang, Yi & Ji, Qiang & Fan, Ying, 2018. "The price and income elasticity of China's natural gas demand: A multi-sectoral perspective," Energy Policy, Elsevier, vol. 113(C), pages 332-341.
    4. Burke, Paul J. & Yang, Hewen, 2016. "The price and income elasticities of natural gas demand: International evidence," Energy Economics, Elsevier, vol. 59(C), pages 466-474.
    5. Westner, Günther & Madlener, Reinhard, 2011. "Development of cogeneration in Germany: A mean-variance portfolio analysis of individual technology’s prospects in view of the new regulatory framework," Energy, Elsevier, vol. 36(8), pages 5301-5313.
    6. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    7. Lin, Boqiang & Li, Zhensheng, 2020. "Analysis of the natural gas demand and subsidy in China: A multi-sectoral perspective," Energy, Elsevier, vol. 202(C).
    8. Wu, Qunli & Peng, Chenyang, 2017. "A hybrid BAG-SA optimal approach to estimate energy demand of China," Energy, Elsevier, vol. 120(C), pages 985-995.
    9. Fedoseeva, Svetlana & Zeidan, Rodrigo, 2018. "How (a)symmetric is the response of import demand to changes in its determinants? Evidence from European energy imports," Energy Economics, Elsevier, vol. 69(C), pages 379-394.
    10. Siler-Evans, Kyle & Morgan, M. Granger & Azevedo, Inês Lima, 2012. "Distributed cogeneration for commercial buildings: Can we make the economics work?," Energy Policy, Elsevier, vol. 42(C), pages 580-590.
    11. Li, Wei & Lu, Can, 2019. "The multiple effectiveness of state natural gas consumption constraint policies for achieving sustainable development targets in China," Applied Energy, Elsevier, vol. 235(C), pages 685-698.
    12. Schwob, Marcelo Rousseau Valença & Henriques Jr., Maurício & Szklo, Alexandre, 2009. "Technical potential for developing natural gas use in the Brazilian red ceramic industry," Applied Energy, Elsevier, vol. 86(9), pages 1524-1531, September.
    13. Romero Rodríguez, Laura & Salmerón Lissén, José Manuel & Sánchez Ramos, José & Rodríguez Jara, Enrique Ángel & Álvarez Domínguez, Servando, 2016. "Analysis of the economic feasibility and reduction of a building’s energy consumption and emissions when integrating hybrid solar thermal/PV/micro-CHP systems," Applied Energy, Elsevier, vol. 165(C), pages 828-838.
    14. Streimikiene, Dalia & Baležentis, Tomas, 2013. "Multi-criteria assessment of small scale CHP technologies in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 183-189.
    15. Malagueta, Diego & Szklo, Alexandre & Borba, Bruno Soares Moreira Cesar & Soria, Rafael & Aragão, Raymundo & Schaeffer, Roberto & Dutra, Ricardo, 2013. "Assessing incentive policies for integrating centralized solar power generation in the Brazilian electric power system," Energy Policy, Elsevier, vol. 59(C), pages 198-212.
    16. Chung, Mo & Park, Chuhwan & Lee, Sukgyu & Park, Hwa-Choon & Im, Yong-Hoon & Chang, Youngho, 2012. "A decision support assessment of cogeneration plant for a community energy system in Korea," Energy Policy, Elsevier, vol. 47(C), pages 365-383.
    17. Kristine Grimsrud & Knut Einar Rosendahl & Halvor B. Storrøsten & Marina Tsygankova, 2016. "Short Run Effects of Bleaker Prospects for Oligopolistic Producers of a Non-renewable Resource," The Energy Journal, , vol. 37(3), pages 293-314, July.
    18. Jumah Ahmad Alzyadat, 2022. "The Price and Income Elasticity of Demand for Natural Gas Consumption in Saudi Arabia," International Journal of Energy Economics and Policy, Econjournals, vol. 12(6), pages 357-363, November.
    19. Björnebo, Lars & Spatari, Sabrina & Gurian, Patrick L., 2018. "A greenhouse gas abatement framework for investment in district heating," Applied Energy, Elsevier, vol. 211(C), pages 1095-1105.
    20. Lionel Fontagné & Philippe Martin & Gianluca Orefice, 2024. "The many channels of firm’s adjustment to energy shocks: evidence from France," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 39(117), pages 5-43.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:50:y:2012:i:c:p:192-206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.