Verification of the Reliability of Offshore Wind Resource Prediction Using an Atmosphere–Ocean Coupled Model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Mattar, Cristian & Borvarán, Dager, 2016. "Offshore wind power simulation by using WRF in the central coast of Chile," Renewable Energy, Elsevier, vol. 94(C), pages 22-31.
- Wang, Yi-Hui & Walter, Ryan K. & White, Crow & Farr, Hayley & Ruttenberg, Benjamin I., 2019. "Assessment of surface wind datasets for estimating offshore wind energy along the Central California Coast," Renewable Energy, Elsevier, vol. 133(C), pages 343-353.
- Chancham, Chana & Waewsak, Jompob & Gagnon, Yves, 2017. "Offshore wind resource assessment and wind power plant optimization in the Gulf of Thailand," Energy, Elsevier, vol. 139(C), pages 706-731.
- Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2014. "Sensitivity of the WRF model wind simulation and wind energy production estimates to planetary boundary layer parameterizations for onshore and offshore areas in the Iberian Peninsula," Applied Energy, Elsevier, vol. 135(C), pages 234-246.
- Manwell, J.F. & Rogers, A.L. & McGowan, J.G. & Bailey, B.H., 2002. "An offshore wind resource assessment study for New England," Renewable Energy, Elsevier, vol. 27(2), pages 175-187.
- Greeshma Mohan & C. Srinivas & C. Naidu & R. Baskaran & B. Venkatraman, 2015. "Real-time numerical simulation of tropical cyclone Nilam with WRF: experiments with different initial conditions, 3D-Var and Ocean Mixed Layer Model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 597-624, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- González-Alonso de Linaje, N. & Mattar, C. & Borvarán, D., 2019. "Quantifying the wind energy potential differences using different WRF initial conditions on Mediterranean coast of Chile," Energy, Elsevier, vol. 188(C).
- Salvação, N. & Guedes Soares, C., 2018. "Wind resource assessment offshore the Atlantic Iberian coast with the WRF model," Energy, Elsevier, vol. 145(C), pages 276-287.
- Jared A. Lee & Paula Doubrawa & Lulin Xue & Andrew J. Newman & Caroline Draxl & George Scott, 2019. "Wind Resource Assessment for Alaska’s Offshore Regions: Validation of a 14-Year High-Resolution WRF Data Set," Energies, MDPI, vol. 12(14), pages 1-22, July.
- Chancham, Chana & Waewsak, Jompob & Gagnon, Yves, 2017. "Offshore wind resource assessment and wind power plant optimization in the Gulf of Thailand," Energy, Elsevier, vol. 139(C), pages 706-731.
- Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2017. "Offshore winds and wind energy production estimates derived from ASCAT, OSCAT, numerical weather prediction models and buoys – A comparative study for the Iberian Peninsula Atlantic coast," Renewable Energy, Elsevier, vol. 102(PB), pages 433-444.
- Tuy, Soklin & Lee, Han Soo & Chreng, Karodine, 2022. "Integrated assessment of offshore wind power potential using Weather Research and Forecast (WRF) downscaling with Sentinel-1 satellite imagery, optimal sites, annual energy production and equivalent C," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
- Christina Ortega & Amin Younes & Mark Severy & Charles Chamberlin & Arne Jacobson, 2020. "Resource and Load Compatibility Assessment of Wind Energy Offshore of Humboldt County, California," Energies, MDPI, vol. 13(21), pages 1-27, October.
- Dong, Cong & Huang, Guohe (Gordon) & Cheng, Guanhui, 2021. "Offshore wind can power Canada," Energy, Elsevier, vol. 236(C).
- Majidi Nezhad, Meysam & Neshat, Mehdi & Piras, Giuseppe & Astiaso Garcia, Davide, 2022. "Sites exploring prioritisation of offshore wind energy potential and mapping for wind farms installation: Iranian islands case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Archer, C.L. & Simão, H.P. & Kempton, W. & Powell, W.B. & Dvorak, M.J., 2017. "The challenge of integrating offshore wind power in the U.S. electric grid. Part I: Wind forecast error," Renewable Energy, Elsevier, vol. 103(C), pages 346-360.
- Arun Kumar, Surisetty V.V. & Nagababu, Garlapati & Kumar, Raj, 2019. "Comparative study of offshore winds and wind energy production derived from multiple scatterometers and met buoys," Energy, Elsevier, vol. 185(C), pages 599-611.
- He, Junyi & Chan, P.W. & Li, Qiusheng & Lee, C.W., 2020. "Spatiotemporal analysis of offshore wind field characteristics and energy potential in Hong Kong," Energy, Elsevier, vol. 201(C).
- Chen, Xinping & Foley, Aoife & Zhang, Zenghai & Wang, Kaimin & O'Driscoll, Kieran, 2020. "An assessment of wind energy potential in the Beibu Gulf considering the energy demands of the Beibu Gulf Economic Rim," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
- Costoya, X. & deCastro, M. & Carvalho, D. & Gómez-Gesteira, M., 2020. "On the suitability of offshore wind energy resource in the United States of America for the 21st century," Applied Energy, Elsevier, vol. 262(C).
- de Assis Tavares, Luiz Filipe & Shadman, Milad & Assad, Luiz Paulo de Freitas & Estefen, Segen F., 2022. "Influence of the WRF model and atmospheric reanalysis on the offshore wind resource potential and cost estimation: A case study for Rio de Janeiro State," Energy, Elsevier, vol. 240(C).
- Argüeso, D. & Businger, S., 2018. "Wind power characteristics of Oahu, Hawaii," Renewable Energy, Elsevier, vol. 128(PA), pages 324-336.
- Gil Ruiz, Samuel Andrés & Cañón Barriga, Julio Eduardo & Martínez, J. Alejandro, 2022. "Assessment and validation of wind power potential at convection-permitting resolution for the Caribbean region of Colombia," Energy, Elsevier, vol. 244(PB).
- Perini de Souza, Noele Bissoli & Sperandio Nascimento, Erick Giovani & Bandeira Santos, Alex Alisson & Moreira, Davidson Martins, 2022. "Wind mapping using the mesoscale WRF model in a tropical region of Brazil," Energy, Elsevier, vol. 240(C).
- Tuchtenhagen, Patrícia & Carvalho, Gilvani Gomes de & Martins, Guilherme & Silva, Pollyanne Evangelista da & Oliveira, Cristiano Prestrelo de & de Melo Barbosa Andrade, Lara & Araújo, João Medeiros de, 2020. "WRF model assessment for wind intensity and power density simulation in the southern coast of Brazil," Energy, Elsevier, vol. 190(C).
- Sward, J.A. & Ault, T.R. & Zhang, K.M., 2023. "Spatial biases revealed by LiDAR in a multiphysics WRF ensemble designed for offshore wind," Energy, Elsevier, vol. 262(PA).
More about this item
Keywords
offshore wind resource; wind power production; weather research forecasting; ocean mixed layer; sea surface temperature; prediction model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:1:p:254-:d:305068. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.