IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i1p253-d305069.html
   My bibliography  Save this article

Thermal Gradients with Sintered Solid State Electrolytes in Lithium-Ion Batteries

Author

Listed:
  • Robert Bock

    (Department of Energy and Process Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway)

  • Morten Onsrud

    (NORSIRK AS, NO-0663 Oslo, Norway)

  • Håvard Karoliussen

    (Department of Energy and Process Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway)

  • Bruno G. Pollet

    (Department of Energy and Process Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway)

  • Frode Seland

    (Department of Materials Science and Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway)

  • Odne S. Burheim

    (Department of Energy and Process Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway)

Abstract

The electrolyte is one of the three essential constituents of a Lithium-Ion battery (LiB) in addition to the anode and cathode. During increasingly high power and high current charging and discharging, the requirement for the electrolyte becomes more strict. Solid State Electrolyte (SSE) sees its niche for high power applications due to its ability to suppress concentration polarization and otherwise stable properties also related to safety. During high power and high current cycling, heat management becomes more important and thermal conductivity measurements are needed. In this work, thermal conductivity was measured for three types of solid state electrolytes: Li 7 La 3 Zr 2 O 12 (LLZO), Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 (LAGP), and Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 (LATP) at different compaction pressures. LAGP and LATP were measured after sintering, and LLZO was measured before and after sintering the sample material. Thermal conductivity for the sintered electrolytes was measured to 0.470 ± 0.009 WK − 1 m − 1 , 0.5 ± 0.2 WK − 1 m − 1 and 0.49 ± 0.02 WK − 1 m − 1 for LLZO, LAGP, and LATP respectively. Before sintering, LLZO showed a thermal conductivity of 0.22 ± 0.02 WK − 1 m − 1 . An analytical temperature distribution model for a battery stack of 24 cells shows temperature differences between battery center and edge of 1–2 K for standard liquid electrolytes and 7–9 K for solid state electrolytes, both at the same C-rate of four.

Suggested Citation

  • Robert Bock & Morten Onsrud & Håvard Karoliussen & Bruno G. Pollet & Frode Seland & Odne S. Burheim, 2020. "Thermal Gradients with Sintered Solid State Electrolytes in Lithium-Ion Batteries," Energies, MDPI, vol. 13(1), pages 1-13, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:1:p:253-:d:305069
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/1/253/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/1/253/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eddahech, Akram & Briat, Olivier & Vinassa, Jean-Michel, 2015. "Performance comparison of four lithium–ion battery technologies under calendar aging," Energy, Elsevier, vol. 84(C), pages 542-550.
    2. Jürgen Janek & Wolfgang G. Zeier, 2016. "A solid future for battery development," Nature Energy, Nature, vol. 1(9), pages 1-4, September.
    3. Yuki Kato & Satoshi Hori & Toshiya Saito & Kota Suzuki & Masaaki Hirayama & Akio Mitsui & Masao Yonemura & Hideki Iba & Ryoji Kanno, 2016. "High-power all-solid-state batteries using sulfide superionic conductors," Nature Energy, Nature, vol. 1(4), pages 1-7, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun-Ping Hu & Hang Sheng & Qi Deng & Qiang Ma & Jun Liu & Xiong-Wei Wu & Jun-Jie Liu & Yu-Ping Wu, 2020. "High-Rate Layered Cathode of Lithium-Ion Batteries through Regulating Three-Dimensional Agglomerated Structure," Energies, MDPI, vol. 13(7), pages 1-12, April.
    2. C. M. Costa & S. Lanceros-Mendez, 2021. "Smart and Functional Materials for Lithium-Ion Battery," Energies, MDPI, vol. 14(22), pages 1-3, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyeokjin Kwon & Hyun-Ji Choi & Jung-kyu Jang & Jinhong Lee & Jinkwan Jung & Wonjun Lee & Youngil Roh & Jaewon Baek & Dong Jae Shin & Ju-Hyuk Lee & Nam-Soon Choi & Ying Shirley Meng & Hee-Tak Kim, 2023. "Weakly coordinated Li ion in single-ion-conductor-based composite enabling low electrolyte content Li-metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Sebastian Scheld, Walter & Charlotte Hoff, Linda & Vedder, Christian & Stollenwerk, Jochen & Grüner, Daniel & Rosen, Melanie & Lobe, Sandra & Ihrig, Martin & Seok, Ah–Ram & Finsterbusch, Martin & Uhle, 2023. "Enabling metal substrates for garnet-based composite cathodes by laser sintering," Applied Energy, Elsevier, vol. 345(C).
    3. Sewon Kim & Ju-Sik Kim & Lincoln Miara & Yan Wang & Sung-Kyun Jung & Seong Yong Park & Zhen Song & Hyungsub Kim & Michael Badding & JaeMyung Chang & Victor Roev & Gabin Yoon & Ryounghee Kim & Jung-Hwa, 2022. "High-energy and durable lithium metal batteries using garnet-type solid electrolytes with tailored lithium-metal compatibility," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Jessica Kersey & Natalie D. Popovich & Amol A. Phadke, 2022. "Rapid battery cost declines accelerate the prospects of all-electric interregional container shipping," Nature Energy, Nature, vol. 7(7), pages 664-674, July.
    5. Shuo Wang & Jiamin Fu & Yunsheng Liu & Ramanuja Srinivasan Saravanan & Jing Luo & Sixu Deng & Tsun-Kong Sham & Xueliang Sun & Yifei Mo, 2023. "Design principles for sodium superionic conductors," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Abdulrahman S. Binfaris & Alexander G. Zestos & Jandro L. Abot, 2023. "Development of Carbon Nanotube Yarn Supercapacitors and Energy Storage for Integrated Structural Health Monitoring," Energies, MDPI, vol. 16(15), pages 1-14, August.
    7. Wu, Zhijun & Xie, Zhengkun & Yoshida, Akihiro & Wang, Zhongde & Hao, Xiaogang & Abudula, Abuliti & Guan, Guoqing, 2019. "Utmost limits of various solid electrolytes in all-solid-state lithium batteries: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 367-385.
    8. Bornmann, Lutz & Haunschild, Robin, 2022. "Empirical analysis of recent temporal dynamics of research fields: Annual publications in chemistry and related areas as an example," Journal of Informetrics, Elsevier, vol. 16(2).
    9. Nian Zhang & Guoxi Ren & Lili Li & Zhi Wang & Pengfei Yu & Xiaobao Li & Jing Zhou & Hui Zhang & Linjuan Zhang & Zhi Liu & Xiaosong Liu, 2024. "Dynamical evolution of CO2 and H2O on garnet electrolyte elucidated by ambient pressure X-ray spectroscopies," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Amiri, Ahmad & Swart, Edward Ned & Polycarpou, Andreas A., 2021. "Recent advances in electrochemically-efficient materials for zinc-ion hybrid supercapacitors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    11. Lv Hu & Jinzhu Wang & Kai Wang & Zhenqi Gu & Zhiwei Xi & Hui Li & Fang Chen & Youxi Wang & Zhenyu Li & Cheng Ma, 2023. "A cost-effective, ionically conductive and compressible oxychloride solid-state electrolyte for stable all-solid-state lithium-based batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Chao Zhu & Till Fuchs & Stefan A. L. Weber & Felix. H. Richter & Gunnar Glasser & Franjo Weber & Hans-Jürgen Butt & Jürgen Janek & Rüdiger Berger, 2023. "Understanding the evolution of lithium dendrites at Li6.25Al0.25La3Zr2O12 grain boundaries via operando microscopy techniques," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Coester, Andreas & Hofkes, Marjan W. & Papyrakis, Elissaios, 2020. "Economic analysis of batteries: Impact on security of electricity supply and renewable energy expansion in Germany," Applied Energy, Elsevier, vol. 275(C).
    14. Raijmakers, L.H.J. & Danilov, D.L. & Eichel, R.-A. & Notten, P.H.L., 2019. "A review on various temperature-indication methods for Li-ion batteries," Applied Energy, Elsevier, vol. 240(C), pages 918-945.
    15. Mathieu, Romain & Baghdadi, Issam & Briat, Olivier & Gyan, Philippe & Vinassa, Jean-Michel, 2017. "D-optimal design of experiments applied to lithium battery for ageing model calibration," Energy, Elsevier, vol. 141(C), pages 2108-2119.
    16. Xinxin Wang & Jingjing Chen & Dajian Wang & Zhiyong Mao, 2021. "Improving the alkali metal electrode/inorganic solid electrolyte contact via room-temperature ultrasound solid welding," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    17. Ruiz, V. & Pfrang, A. & Kriston, A. & Omar, N. & Van den Bossche, P. & Boon-Brett, L., 2018. "A review of international abuse testing standards and regulations for lithium ion batteries in electric and hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1427-1452.
    18. Goh, Taedong & Park, Minjun & Seo, Minhwan & Kim, Jun Gu & Kim, Sang Woo, 2018. "Successive-approximation algorithm for estimating capacity of Li-ion batteries," Energy, Elsevier, vol. 159(C), pages 61-73.
    19. Garg, Mayank & Tanim, Tanvir R. & Rahn, Christopher D. & Bryngelsson, Hanna & Legnedahl, Niklas, 2018. "Elevated temperature for life extension of lithium ion power cells," Energy, Elsevier, vol. 159(C), pages 716-723.
    20. Lin, Yan-Hui & Ruan, Sheng-Jia & Chen, Yun-Xia & Li, Yan-Fu, 2023. "Physics-informed deep learning for lithium-ion battery diagnostics using electrochemical impedance spectroscopy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:1:p:253-:d:305069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.