Thermal performance analysis of a 20-feet latent cold energy storage device integrated with a novel fin-plate unit for building cooling
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2022.09.130
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Pereira da Cunha, Jose & Eames, Philip, 2016. "Thermal energy storage for low and medium temperature applications using phase change materials – A review," Applied Energy, Elsevier, vol. 177(C), pages 227-238.
- Fang, Y. & Qu, Z.G. & Zhang, J.F. & Xu, H.T. & Qi, G.L., 2020. "Simultaneous charging and discharging performance for a latent thermal energy storage system with a microencapsulated phase change material," Applied Energy, Elsevier, vol. 275(C).
- Yıldız, Çağatay & Arıcı, Müslüm & Nižetić, Sandro & Shahsavar, Amin, 2020. "Numerical investigation of natural convection behavior of molten PCM in an enclosure having rectangular and tree-like branching fins," Energy, Elsevier, vol. 207(C).
- Zheng, Jiayi & Wang, Jing & Chen, Taotao & Yu, Yanshun, 2020. "Solidification performance of heat exchanger with tree-shaped fins," Renewable Energy, Elsevier, vol. 150(C), pages 1098-1107.
- Mohammad Javad Zarei & Hassan Bazai & Mohsen Sharifpur & Omid Mahian & Bahman Shabani, 2020. "The Effects of Fin Parameters on the Solidification of PCMs in a Fin-Enhanced Thermal Energy Storage System," Energies, MDPI, vol. 13(1), pages 1-20, January.
- Jiang, Feng & Ge, Zhiwei & Ling, Xiang & Cang, Daqiang & Zhang, Lingling & Ding, Yulong, 2021. "Improved thermophysical properties of shape-stabilized NaNO3 using a modified diatomite-based porous ceramic for solar thermal energy storage," Renewable Energy, Elsevier, vol. 179(C), pages 327-338.
- Diaz-Cachinero, Pablo & Muñoz-Hernandez, Jose Ignacio & Contreras, Javier, 2021. "Integrated operational planning model, considering optimal delivery routing, incentives and electric vehicle aggregated demand management," Applied Energy, Elsevier, vol. 304(C).
- Zhao, Chunrong & Wang, Jianyong & Sun, Yubiao & He, Suoying & Hooman, Kamel, 2022. "Fin design optimization to enhance PCM melting rate inside a rectangular enclosure," Applied Energy, Elsevier, vol. 321(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Liang, Yan & Yang, Haibin & Wang, Huilong & Bao, Xiaohua & Cui, Hongzhi, 2024. "Enhancing energy efficiency of air conditioning system through optimization of PCM-based cold energy storage tank: A data center case study," Energy, Elsevier, vol. 286(C).
- Liu, Zichu & Quan, Zhenhua & Zhao, Yaohua & Zhang, Wanlin & Yang, Mingguang & Shi, Junzhang, 2023. "Thermal performance analysis of ice thermal storage device based on micro heat pipe arrays: Role of bubble-driven flow," Renewable Energy, Elsevier, vol. 217(C).
- Ait Laasri, Imad & Es-sakali, Niima & Charai, Mouatassim & Mghazli, Mohamed Oualid & Outzourhit, Abdelkader, 2024. "Recent progress, limitations, and future directions of macro-encapsulated phase change materials for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
- Ait Laasri, Imad & Charai, Mouatassim & Mghazli, Mohamed Oualid & Outzourhit, Abdelkader, 2024. "Energy performance assessment of a novel enhanced solar thermal system with topology optimized latent heat thermal energy storage unit for domestic water heating," Renewable Energy, Elsevier, vol. 224(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Huang, Yongping & Yao, Feng & Liu, Xiangdong, 2021. "Numerical study on the thermal enhancement of horizontal latent heat storage units with hierarchical fins," Renewable Energy, Elsevier, vol. 180(C), pages 383-397.
- Fei Ma & Tianji Zhu & Yalin Zhang & Xinli Lu & Wei Zhang & Feng Ma, 2023. "A Review on Heat Transfer Enhancement of Phase Change Materials Using Fin Tubes," Energies, MDPI, vol. 16(1), pages 1-25, January.
- Mohammadreza Ebrahimnataj Tiji & Jasim M. Mahdi & Hayder I. Mohammed & Hasan Sh. Majdi & Abbas Ebrahimi & Rohollah Babaei Mahani & Pouyan Talebizadehsardari & Wahiba Yaïci, 2021. "Natural Convection Effect on Solidification Enhancement in a Multi-Tube Latent Heat Storage System: Effect of Tubes’ Arrangement," Energies, MDPI, vol. 14(22), pages 1-23, November.
- Qicheng Chen & Junting Wu & Kanglong Sun & Yingjin Zhang, 2022. "Numerical Study of Heat Transfer Enhancement by Arc-Shaped Fins in a Shell-Tube Thermal Energy Storage Unit," Energies, MDPI, vol. 15(20), pages 1-23, October.
- Mao, Qianjun & Zhu, Yuanyuan & Li, Tao, 2023. "Study on heat storage performance of a novel bifurcated finned shell-tube heat storage tank," Energy, Elsevier, vol. 263(PA).
- Li, Zhi & Lu, Yiji & Huang, Rui & Chang, Jinwei & Yu, Xiaonan & Jiang, Ruicheng & Yu, Xiaoli & Roskilly, Anthony Paul, 2021. "Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage," Applied Energy, Elsevier, vol. 283(C).
- Xinguo Sun & Jasim M. Mahdi & Hayder I. Mohammed & Hasan Sh. Majdi & Wang Zixiong & Pouyan Talebizadehsardari, 2021. "Solidification Enhancement in a Triple-Tube Latent Heat Energy Storage System Using Twisted Fins," Energies, MDPI, vol. 14(21), pages 1-23, November.
- Mohammad, Mehedi Bin & Brooks, Geoffrey Alan & Rhamdhani, M. Akbar, 2017. "Thermal analysis of molten ternary lithium-sodium-potassium nitrates," Renewable Energy, Elsevier, vol. 104(C), pages 76-87.
- Gai Zhang & Hui Cui & Xuecheng Hu & Anchao Qu & Hao Peng & Xiaotian Peng, 2024. "Research on NaCl-KCl High-Temperature Thermal Storage Composite Phase Change Material Based on Modified Blast Furnace Slag," Energies, MDPI, vol. 17(10), pages 1-20, May.
- Shahsavar, Amin & Al-Rashed, Abdullah A.A.A. & Entezari, Sajad & Sardari, Pouyan Talebizadeh, 2019. "Melting and solidification characteristics of a double-pipe latent heat storage system with sinusoidal wavy channels embedded in a porous medium," Energy, Elsevier, vol. 171(C), pages 751-769.
- Umair, Malik Muhammad & Zhang, Yuang & Iqbal, Kashif & Zhang, Shufen & Tang, Bingtao, 2019. "Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review," Applied Energy, Elsevier, vol. 235(C), pages 846-873.
- Yu, Xiaoli & Li, Zhi & Lu, Yiji & Huang, Rui & Roskilly, Anthony Paul, 2019. "Investigation of organic Rankine cycle integrated with double latent thermal energy storage for engine waste heat recovery," Energy, Elsevier, vol. 170(C), pages 1098-1112.
- Zhao, Kai & Tian, Zhenyu & Zhang, Jinrui & Lu, Buchu & Hao, Yong, 2023. "Methanol steam reforming reactor with fractal tree-shaped structures for photovoltaic–thermochemical hybrid power generation," Applied Energy, Elsevier, vol. 330(PB).
- Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung & Eddhahak, Anissa, 2019. "A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 467-484.
- Giovanni Salvatore Sau & Valerio Tripi & Anna Chiara Tizzoni & Raffaele Liberatore & Emiliana Mansi & Annarita Spadoni & Natale Corsaro & Mauro Capocelli & Tiziano Delise & Anna Della Libera, 2021. "High-Temperature Chloride-Carbonate Phase Change Material: Thermal Performances and Modelling of a Packed Bed Storage System for Concentrating Solar Power Plants," Energies, MDPI, vol. 14(17), pages 1-17, August.
- Li, Yantong & Huang, Gongsheng & Xu, Tao & Liu, Xiaoping & Wu, Huijun, 2018. "Optimal design of PCM thermal storage tank and its application for winter available open-air swimming pool," Applied Energy, Elsevier, vol. 209(C), pages 224-235.
- Xu, Haoxin & Romagnoli, Alessandro & Sze, Jia Yin & Py, Xavier, 2017. "Application of material assessment methodology in latent heat thermal energy storage for waste heat recovery," Applied Energy, Elsevier, vol. 187(C), pages 281-290.
- Hawks, M.A. & Cho, S., 2024. "Review and analysis of current solutions and trends for zero energy building (ZEB) thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Khor, J.O. & Sze, J.Y. & Li, Y. & Romagnoli, A., 2020. "Overcharging of a cascaded packed bed thermal energy storage: Effects and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
More about this item
Keywords
Latent cold energy storage; Fin-plate unit; Phase change materials; Charging/discharging performance; Energy storage efficiency;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:200:y:2022:i:c:p:405-418. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.