Battery Stress Factor Ranking for Accelerated Degradation Test Planning Using Machine Learning
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Archer, Kellie J. & Kimes, Ryan V., 2008. "Empirical characterization of random forest variable importance measures," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 2249-2260, January.
- Wenshuo Tang & Darius Roman & Ross Dickie & Valentin Robu & David Flynn, 2020. "Prognostics and Health Management for the Optimization of Marine Hybrid Energy Systems," Energies, MDPI, vol. 13(18), pages 1-29, September.
- Hapfelmeier, A. & Ulm, K., 2013. "A new variable selection approach using Random Forests," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 50-69.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li, Alan G. & West, Alan C. & Preindl, Matthias, 2022. "Towards unified machine learning characterization of lithium-ion battery degradation across multiple levels: A critical review," Applied Energy, Elsevier, vol. 316(C).
- Jiahui Zhao & Yong Zhu & Bin Zhang & Mingyi Liu & Jianxing Wang & Chenghao Liu & Xiaowei Hao, 2023. "Review of State Estimation and Remaining Useful Life Prediction Methods for Lithium–Ion Batteries," Sustainability, MDPI, vol. 15(6), pages 1-22, March.
- Weiping Diao & Chetan Kulkarni & Michael Pecht, 2021. "Development of an Informative Lithium-Ion Battery Datasheet," Energies, MDPI, vol. 14(17), pages 1-19, September.
- Haber, Marc & Azaïs, Philippe & Genies, Sylvie & Raccurt, Olivier, 2023. "Stress factor identification and Risk Probabilistic Number (RPN) analysis of Li-ion batteries based on worldwide electric vehicle usage," Applied Energy, Elsevier, vol. 343(C).
- Nataliia Shamarova & Konstantin Suslov & Pavel Ilyushin & Ilia Shushpanov, 2022. "Review of Battery Energy Storage Systems Modeling in Microgrids with Renewables Considering Battery Degradation," Energies, MDPI, vol. 15(19), pages 1-18, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ingrida Vaiciulyte & Zivile Kalsyte & Leonidas Sakalauskas & Darius Plikynas, 2017. "Assessment of market reaction on the share performance on the basis of its visualization in 2D space," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 18(2), pages 309-318, March.
- Hapfelmeier, A. & Ulm, K., 2014. "Variable selection by Random Forests using data with missing values," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 129-139.
- Binh Thai Pham & Chongchong Qi & Lanh Si Ho & Trung Nguyen-Thoi & Nadhir Al-Ansari & Manh Duc Nguyen & Huu Duy Nguyen & Hai-Bang Ly & Hiep Van Le & Indra Prakash, 2020. "A Novel Hybrid Soft Computing Model Using Random Forest and Particle Swarm Optimization for Estimation of Undrained Shear Strength of Soil," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
- Liangyuan Hu & Lihua Li, 2022. "Using Tree-Based Machine Learning for Health Studies: Literature Review and Case Series," IJERPH, MDPI, vol. 19(23), pages 1-13, December.
- Weijun Wang & Dan Zhao & Liguo Fan & Yulong Jia, 2019. "Study on Icing Prediction of Power Transmission Lines Based on Ensemble Empirical Mode Decomposition and Feature Selection Optimized Extreme Learning Machine," Energies, MDPI, vol. 12(11), pages 1-21, June.
- Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018.
"Agent-based model calibration using machine learning surrogates,"
Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," SciencePo Working papers Main hal-01499344, HAL.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," Working Papers hal-03458875, HAL.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," Papers 1703.10639, arXiv.org, revised Apr 2017.
- Frencesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-based model calibration using machine learning surrogates," Documents de Travail de l'OFCE 2017-09, Observatoire Francais des Conjonctures Economiques (OFCE).
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01499344, HAL.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," LEM Papers Series 2017/11, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," Working Papers hal-01499344, HAL.
- Jung-sik Hong & Hyeongyu Yeo & Nam-Wook Cho & Taeuk Ahn, 2018. "Identification of Core Suppliers Based on E-Invoice Data Using Supervised Machine Learning," JRFM, MDPI, vol. 11(4), pages 1-13, October.
- Silke Janitza & Ender Celik & Anne-Laure Boulesteix, 2018. "A computationally fast variable importance test for random forests for high-dimensional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(4), pages 885-915, December.
- Mohamed Zine & Fouzi Harrou & Mohammed Terbeche & Mohammed Bellahcene & Abdelkader Dairi & Ying Sun, 2023. "E-Learning Readiness Assessment Using Machine Learning Methods," Sustainability, MDPI, vol. 15(11), pages 1-22, June.
- repec:hal:spmain:info:hdl:2441/13thfd12aa8rmplfudlgvgahff is not listed on IDEAS
- Chen, Enhui & Stathopoulos, Amanda & Nie, Yu (Marco), 2022. "Transfer station choice in a multimodal transit system: An empirical study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 337-355.
- Yigit Aydede & Jan Ditzen, 2022. "Identifying the regional drivers of influenza-like illness in Nova Scotia with dominance analysis," Papers 2212.06684, arXiv.org.
- Sameer Al-Dahidi & Piero Baraldi & Miriam Fresc & Enrico Zio & Lorenzo Montelatici, 2024. "Feature Selection by Binary Differential Evolution for Predicting the Energy Production of a Wind Plant," Energies, MDPI, vol. 17(10), pages 1-19, May.
- Lotfi Boudabsa & Damir Filipovi'c, 2022. "Ensemble learning for portfolio valuation and risk management," Papers 2204.05926, arXiv.org.
- Lorilla, Roxanne Suzette & Poirazidis, Konstantinos & Detsis, Vassilis & Kalogirou, Stamatis & Chalkias, Christos, 2020. "Socio-ecological determinants of multiple ecosystem services on the Mediterranean landscapes of the Ionian Islands (Greece)," Ecological Modelling, Elsevier, vol. 422(C).
- Lkhagvadorj Munkhdalai & Tsendsuren Munkhdalai & Oyun-Erdene Namsrai & Jong Yun Lee & Keun Ho Ryu, 2019. "An Empirical Comparison of Machine-Learning Methods on Bank Client Credit Assessments," Sustainability, MDPI, vol. 11(3), pages 1-23, January.
- De Bock, Koen W. & Coussement, Kristof & Van den Poel, Dirk, 2010.
"Ensemble classification based on generalized additive models,"
Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1535-1546, June.
- K. W. De Bock & K. Coussement & D. Van Den Poel & -, 2009. "Ensemble classification based on generalized additive models," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 09/625, Ghent University, Faculty of Economics and Business Administration.
- De Bock, Koen W & Coussement, Kristof & Van den Poel, Dirk, 2010. "Ensemble classification based on generalized additive models," Working Papers 2010/02, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
- K.W. de Bock & K. Coussement & D. van den Poel, 2010. "Ensemble classification based on generalized additive models," Post-Print halshs-00581711, HAL.
- Zeynep Ceylan & Abdulkadir Atalan, 2021. "Estimation of healthcare expenditure per capita of Turkey using artificial intelligence techniques with genetic algorithm‐based feature selection," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 279-290, March.
- Ollech, Daniel & Webel, Karsten, 2020. "A random forest-based approach to identifying the most informative seasonality tests," Discussion Papers 55/2020, Deutsche Bundesbank.
- Ilias Thomas & Alex M. Dickens & Jussi P. Posti & Endre Czeiter & Daniel Duberg & Tim Sinioja & Matilda Kråkström & Isabel R. A. Retel Helmrich & Kevin K. W. Wang & Andrew I. R. Maas & Ewout W. Steyer, 2022. "Serum metabolome associated with severity of acute traumatic brain injury," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
- Lu, Xuefei & Baraldi, Piero & Zio, Enrico, 2020. "A data-driven framework for identifying important components in complex systems," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
More about this item
Keywords
lithium-ion batteries; cycle life; temperature; C-rate; accelerated testing; machine learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:723-:d:490181. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.