IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4453-d405378.html
   My bibliography  Save this article

Thermodynamic and Economic Feasibility of Energy Recovery from Pressure Reduction Stations in Natural Gas Distribution Networks

Author

Listed:
  • Piero Danieli

    (Department of Industrial Engineering, University of Padova, 35122 Padova, PD, Italy)

  • Gianluca Carraro

    (Department of Industrial Engineering, University of Padova, 35122 Padova, PD, Italy)

  • Andrea Lazzaretto

    (Department of Industrial Engineering, University of Padova, 35122 Padova, PD, Italy)

Abstract

A big amount of the pressure energy content in the natural gas distribution networks is wasted in throttling valves of pressure reduction stations (PRSs). Just a few energy recovery systems are currently installed in PRSs and are mostly composed of radial turboexpanders coupled with cogeneration internal combustion engines or gas-fired heaters providing the necessary preheating. This paper clarifies the reason for the scarce diffusion of energy recovery systems in PRSs and provides guidelines about the most feasible energy recovery technologies. Nine thousand PRSs are monitored and allocated into 12 classes, featuring different expansion ratios and available power. The focus is on PRSs with 1-to-20 expansion ratio and 1-to-500 kW available power. Three kinds of expanders are proposed in combination with different preheating systems based on boilers, heat pumps, or cogeneration engines. The goal is to identify, for each class, the most feasible combination by looking at the minimum payback period and maximum net present value. Results show that small size volumetric expanders with low expansion ratios and coupled with gas-fired heaters have the highest potential for large-scale deployment of energy recovery from PRSs. Moreover, the total recoverable energy using the feasible recovery systems is approximately 15% of the available energy.

Suggested Citation

  • Piero Danieli & Gianluca Carraro & Andrea Lazzaretto, 2020. "Thermodynamic and Economic Feasibility of Energy Recovery from Pressure Reduction Stations in Natural Gas Distribution Networks," Energies, MDPI, vol. 13(17), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4453-:d:405378
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4453/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4453/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ghanaee, Reza & Akbari Foroud, Asghar, 2019. "Enhanced structure and optimal capacity sizing method for turbo-expander based microgrid with simultaneous recovery of cooling and electrical energy," Energy, Elsevier, vol. 170(C), pages 284-304.
    2. Farzaneh-Gord, Mahmood & Ghezelbash, Reza & Sadi, Meisam & Moghadam, Ali Jabari, 2016. "Integration of vertical ground-coupled heat pump into a conventional natural gas pressure drop station: Energy, economic and CO2 emission assessment," Energy, Elsevier, vol. 112(C), pages 998-1014.
    3. Yao, Sheng & Zhang, Yufeng & Yu, Xiaohui, 2018. "Thermo-economic analysis of a novel power generation system integrating a natural gas expansion plant with a geothermal ORC in Tianjin, China," Energy, Elsevier, vol. 164(C), pages 602-614.
    4. Farzaneh-Gord, M. & Arabkoohsar, A. & Deymi Dasht-bayaz, M. & Machado, L. & Koury, R.N.N., 2014. "Energy and exergy analysis of natural gas pressure reduction points equipped with solar heat and controllable heaters," Renewable Energy, Elsevier, vol. 72(C), pages 258-270.
    5. Yao, Sheng & Zhang, Yufeng & Deng, Na & Yu, Xiaohui & Dong, Shengming, 2019. "Performance research on a power generation system using twin-screw expanders for energy recovery at natural gas pressure reduction stations under off-design conditions," Applied Energy, Elsevier, vol. 236(C), pages 1218-1230.
    6. Zhang, Xinjing & Xu, Yujie & Xu, Jian & Sheng, Yong & Zuo, Zhitao & Liu, Jimin & Chen, Haisheng & Wang, Yaodong & Huang, Ye, 2017. "Study on the performance and optimization of a scroll expander driven by compressed air," Applied Energy, Elsevier, vol. 186(P3), pages 347-358.
    7. Tian, Yafen & Xing, Ziwen & He, Zhilong & Wu, Huagen, 2017. "Modeling and performance analysis of twin-screw steam expander under fluctuating operating conditions in steam pipeline pressure energy recovery applications," Energy, Elsevier, vol. 141(C), pages 692-701.
    8. Jannatabadi, Mohsen & Farzaneh-Gord, Mahmood & Rahbari, Hamid Reza & Nersi, Abolfazl, 2018. "Energy and exergy analysis of reciprocating natural gas expansion engine based on valve configurations," Energy, Elsevier, vol. 158(C), pages 986-1000.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Xiao & Cai, Liang & Chen, Tao & Zhan, Zhixing, 2021. "Analysis and optimization of a natural gas multi-stage expansion plant integrated with a gas engine-driven heat pump," Energy, Elsevier, vol. 236(C).
    2. Piero Danieli & Massimo Masi & Andrea Lazzaretto & Gianluca Carraro & Gabriele Volpato, 2022. "A Smart Energy Recovery System to Avoid Preheating in Gas Grid Pressure Reduction Stations," Energies, MDPI, vol. 15(1), pages 1-31, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiong, Yaxuan & Zhang, Aitonglu & Peng, Xiaodong & Yao, Chenhua & Wang, Nan & Wu, Yuting & Xu, Qian & Ma, Chongfang, 2023. "Investigation of a sole gas expander for gas pressure regulation and energy recovery," Energy, Elsevier, vol. 281(C).
    2. Lee, Sehyeok & Kim, Dohoon & Ha, Honggeun & Kim, Min Soo, 2023. "Pressure energy recovery of LNG integrated with multi-stage feedwater fuel preheaters in a combined cycle power plant," Energy, Elsevier, vol. 285(C).
    3. Wang, Chuang & Xing, Ziwen & Sun, Shizhong & He, Zhilong, 2020. "Loss analysis of oil-free twin-screw expanders for recovering energy in fuel cell systems by means of p-θ diagrams," Energy, Elsevier, vol. 201(C).
    4. Olfati, Mohammad & Bahiraei, Mehdi & Veysi, Farzad, 2019. "A novel modification on preheating process of natural gas in pressure reduction stations to improve energy consumption, exergy destruction and CO2 emission: Preheating based on real demand," Energy, Elsevier, vol. 173(C), pages 598-609.
    5. Eyerer, Sebastian & Dawo, Fabian & Rieger, Florian & Schuster, Andreas & Aumann, Richard & Wieland, Christoph & Spliethoff, Hartmut, 2019. "Experimental and numerical investigation of direct liquid injection into an ORC twin-screw expander," Energy, Elsevier, vol. 178(C), pages 867-878.
    6. Lo Cascio, Ermanno & Von Friesen, Marc Puig & Schenone, Corrado, 2018. "Optimal retrofitting of natural gas pressure reduction stations for energy recovery," Energy, Elsevier, vol. 153(C), pages 387-399.
    7. Xiong, Yaxuan & An, Shuo & Xu, Peng & Ding, Yulong & Li, Chuan & Zhang, Qunli & Chen, Hongbing, 2018. "A novel expander-depending natural gas pressure regulation configuration: Performance analysis," Applied Energy, Elsevier, vol. 220(C), pages 21-35.
    8. Alparslan Neseli, Mehmet & Ozgener, Onder & Ozgener, Leyla, 2017. "Thermo-mechanical exergy analysis of Marmara Eregli natural gas pressure reduction station (PRS): An application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 80-88.
    9. Zhilong He & Tao Wang & Xiaolin Wang & Xueyuan Peng & Ziwen Xing, 2018. "Experimental Investigation into the Effect of Oil Injection on the Performance of a Variable Speed Twin-Screw Compressor," Energies, MDPI, vol. 11(6), pages 1-14, May.
    10. DeLovato, Nicolas & Sundarnath, Kavin & Cvijovic, Lazar & Kota, Krishna & Kuravi, Sarada, 2019. "A review of heat recovery applications for solar and geothermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    11. Murthy, Anarghya Ananda & Krishan, Gopal & Shenoy, Praveen & Patil, Ishwaragouda S, 2024. "Theoretical, CFD modelling and experimental investigation of a four-intersecting-vane rotary expander," Applied Energy, Elsevier, vol. 353(PB).
    12. Kutlu, Cagri & Erdinc, Mehmet Tahir & Li, Jing & Su, Yuehong & Pei, Gang & Gao, Guangtao & Riffat, Saffa, 2020. "Evaluate the validity of the empirical correlations of clearance and friction coefficients to improve a scroll expander semi-empirical model," Energy, Elsevier, vol. 202(C).
    13. Arabkoohsar, A. & Farzaneh-Gord, M. & Deymi-Dashtebayaz, M. & Machado, L. & Koury, R.N.N., 2015. "A new design for natural gas pressure reduction points by employing a turbo expander and a solar heating set," Renewable Energy, Elsevier, vol. 81(C), pages 239-250.
    14. Alizadeh, Araz & Ghadamian, Hossein & Aminy, Mohammad & Hoseinzadeh, Siamak & Khodayar Sahebi, Hamed & Sohani, Ali, 2022. "An experimental investigation on using heat pipe heat exchanger to improve energy performance in gas city gate station," Energy, Elsevier, vol. 252(C).
    15. Guo, Zhiyu & Zhang, Cancan & Wu, Yuting & Lei, Biao & Yan, Dong & Zhi, Ruiping & Shen, Lili, 2020. "Numerical optimization of intake and exhaust structure and experimental verification on single-screw expander for small-scale ORC applications," Energy, Elsevier, vol. 199(C).
    16. Gu, Chenghong & Zhang, Xin & Ma, Kang & Yan, Jie & Song, Yonghua, 2018. "Impact analysis of electricity supply unreliability to interdependent economic sectors by an economic-technical approach," Renewable Energy, Elsevier, vol. 122(C), pages 108-117.
    17. Massimo Cardone & Bonaventura Gargiulo, 2020. "Numerical Simulation and Experimental Validation of an Oil Free Scroll Compressor," Energies, MDPI, vol. 13(22), pages 1-11, November.
    18. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    19. Farzaneh-Gord, M. & Ghezelbash, R. & Arabkoohsar, A. & Pilevari, L. & Machado, L. & Koury, R.N.N., 2015. "Employing geothermal heat exchanger in natural gas pressure drop station in order to decrease fuel consumption," Energy, Elsevier, vol. 83(C), pages 164-176.
    20. Arabkoohsar, A. & Andresen, G.B., 2019. "Design and optimization of a novel system for trigeneration," Energy, Elsevier, vol. 168(C), pages 247-260.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4453-:d:405378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.