IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i1p371-d718078.html
   My bibliography  Save this article

A Smart Energy Recovery System to Avoid Preheating in Gas Grid Pressure Reduction Stations

Author

Listed:
  • Piero Danieli

    (Department of Management and Engineering, University of Padova—DTG, 36100 Vicenza, Italy)

  • Massimo Masi

    (Department of Management and Engineering, University of Padova—DTG, 36100 Vicenza, Italy)

  • Andrea Lazzaretto

    (Department of Industrial Engineering, University of Padova—DII, 35121 Padova, Italy)

  • Gianluca Carraro

    (Department of Industrial Engineering, University of Padova—DII, 35121 Padova, Italy)

  • Gabriele Volpato

    (Department of Industrial Engineering, University of Padova—DII, 35121 Padova, Italy)

Abstract

Preheating is often required to prevent hydrate formation during the pressure reduction process in a natural gas distribution network’s pressure reduction station. This paper examines an energy recovery method to avoid the cost and energy consumption of this preheating. The primary aim is to assess the techno-economic feasibility of an energy recovery system based on the Ranque–Hilsch vortex tube coupled to a heat exchanger for large-scale application to the gas grid. To this end, a techno-economic model of the entire energy recovery system was included in an optimisation procedure. The resulting design minimises the payback period (PP) when the system is applied to the pressure reduction stations belonging to a particular gas grid. The pressure reduction stations always operate at an outlet pressure above atmospheric pressure. However, available performance models for the Ranque–Hilsch vortex tube do not permit prediction at backpressure operation. Therefore, a novel empirical model of the device is proposed, and a cost function derived from several manufacturer quotations is introduced for the first time, to evaluate the price of the Ranque–Hilsch vortex tubes. Finally, a nearly complete set of pressure reduction stations belonging to the Italian natural gas grid was chosen as a case study using actual operating parameters collected by each station’s grid manager. The results indicate that the environmental temperature strongly affects the technical and economic feasibility of the proposed energy recovery system. In general, pressure reduction stations operating at an ambient temperature above 0 °C are economically desirable candidates. In addition, the higher the energy recovery system convenience, the higher the flow rate and pressure drop managed by the station. In the Italian case study, 95% of preheating costs could be eliminated with a PP of fewer than 20 years. A 40% preheating cost saving is still possible if the maximum PP is limited to 10 years, and a small but non-negligible 3% of preheating costs could be eliminated with a PP of fewer than 4.5 years.

Suggested Citation

  • Piero Danieli & Massimo Masi & Andrea Lazzaretto & Gianluca Carraro & Gabriele Volpato, 2022. "A Smart Energy Recovery System to Avoid Preheating in Gas Grid Pressure Reduction Stations," Energies, MDPI, vol. 15(1), pages 1-31, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:1:p:371-:d:718078
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/1/371/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/1/371/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Piero Danieli & Gianluca Carraro & Andrea Lazzaretto, 2020. "Thermodynamic and Economic Feasibility of Energy Recovery from Pressure Reduction Stations in Natural Gas Distribution Networks," Energies, MDPI, vol. 13(17), pages 1-19, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahmoud Khaled & Samer Ali & Hassan Jaber & Jalal Faraj & Rabih Murr & Thierry Lemenand, 2022. "Heating/Cooling Fresh Air Using Hot/Cold Exhaust Air of Heating, Ventilating, and Air Conditioning Systems," Energies, MDPI, vol. 15(5), pages 1-11, March.
    2. Shahsavar, Amin & Jahangiri, Ali & Qatarani nejad, Amir & Ahmadi, Gholamreza & Karamzadeh dizaji, Alireza, 2022. "Energy and exergy analysis and multi-objective optimization of using combined vortex tube-photovoltaic/thermal system in city gate stations," Renewable Energy, Elsevier, vol. 196(C), pages 1017-1028.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Xiao & Cai, Liang & Chen, Tao & Zhan, Zhixing, 2021. "Analysis and optimization of a natural gas multi-stage expansion plant integrated with a gas engine-driven heat pump," Energy, Elsevier, vol. 236(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:1:p:371-:d:718078. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.