IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4300-d401257.html
   My bibliography  Save this article

Rack Temperature Prediction Model Using Machine Learning after Stopping Computer Room Air Conditioner in Server Room

Author

Listed:
  • Kosuke Sasakura

    (NTT FACILITIES INC, 1-8 Shinohashi 1 Chome, Kotoku, Tokyo 135–0007, Japan)

  • Takeshi Aoki

    (NTT FACILITIES INC, 1-8 Shinohashi 1 Chome, Kotoku, Tokyo 135–0007, Japan)

  • Masayoshi Komatsu

    (NTT FACILITIES INC, 1-8 Shinohashi 1 Chome, Kotoku, Tokyo 135–0007, Japan)

  • Takeshi Watanabe

    (NTT FACILITIES INC, 1-8 Shinohashi 1 Chome, Kotoku, Tokyo 135–0007, Japan)

Abstract

Data centers (DCs) are becoming increasingly important in recent years, and highly efficient and reliable operation and management of DCs is now required. The generated heat density of the rack and information and communication technology (ICT) equipment is predicted to get higher in the future, so it is crucial to maintain the appropriate temperature environment in the server room where high heat is generated in order to ensure continuous service. It is especially important to predict changes of rack intake temperature in the server room when the computer room air conditioner (CRAC) is shut down, which can cause a rapid rise in temperature. However, it is quite difficult to predict the rack temperature accurately, which in turn makes it difficult to determine the impact on service in advance. In this research, we propose a model that predicts the rack intake temperature after the CRAC is shut down. Specifically, we use machine learning to construct a gradient boosting decision tree model with data from the CRAC, ICT equipment, and rack intake temperature. Experimental results demonstrate that the proposed method has a very high prediction accuracy: the coefficient of determination was 0.90 and the root mean square error (RMSE) was 0.54. Our model makes it possible to evaluate the impact on service and determine if action to maintain the temperature environment is required. We also clarify the effect of explanatory variables and training data of the machine learning on the model accuracy.

Suggested Citation

  • Kosuke Sasakura & Takeshi Aoki & Masayoshi Komatsu & Takeshi Watanabe, 2020. "Rack Temperature Prediction Model Using Machine Learning after Stopping Computer Room Air Conditioner in Server Room," Energies, MDPI, vol. 13(17), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4300-:d:401257
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4300/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4300/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Emelie Wibron & Anna-Lena Ljung & T. Staffan Lundström, 2019. "Comparing Performance Metrics of Partial Aisle Containments in Hard Floor and Raised Floor Data Centers Using CFD," Energies, MDPI, vol. 12(8), pages 1-17, April.
    2. Harvey, Andrew C & Koopman, Siem Jan, 1992. "Diagnostic Checking of Unobserved-Components Time Series Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 377-389, October.
    3. Anders S. G. Andrae & Tomas Edler, 2015. "On Global Electricity Usage of Communication Technology: Trends to 2030," Challenges, MDPI, vol. 6(1), pages 1-41, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kosuke Sasakura & Takeshi Aoki & Masayoshi Komatsu & Takeshi Watanabe, 2020. "A Temperature-Risk and Energy-Saving Evaluation Model for Supporting Energy-Saving Measures for Data Center Server Rooms," Energies, MDPI, vol. 13(19), pages 1-22, October.
    2. Zhenxiang Cao & Liqing Peng, 2023. "The Impact of Digital Economics on Environmental Quality: A System Dynamics Approach," SAGE Open, , vol. 13(4), pages 21582440231, December.
    3. Steffen Dalsgaard, 2022. "Can IT Resolve the Climate Crisis? Sketching the Role of an Anthropology of Digital Technology," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    4. Axenbeck, Janna & Niebel, Thomas, 2021. "Climate Protection Potentials of Digitalized Production Processes: Microeconometric Evidence," 23rd ITS Biennial Conference, Online Conference / Gothenburg 2021. Digital societies and industrial transformations: Policies, markets, and technologies in a post-Covid world 238007, International Telecommunications Society (ITS).
    5. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    6. Broto Carmen & Ruiz Esther, 2009. "Testing for Conditional Heteroscedasticity in the Components of Inflation," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(2), pages 1-30, May.
    7. Marczak, Martyna & Proietti, Tommaso, 2016. "Outlier detection in structural time series models: The indicator saturation approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 180-202.
    8. Reema Gh. Alajmi, 2024. "Energy Consumption and Carbon Emissions: An Empirical Study of Saudi Arabia," Sustainability, MDPI, vol. 16(13), pages 1-16, June.
    9. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    10. Barnett, William A. & de Peretti, Philippe, 2009. "Admissible Clustering Of Aggregator Components: A Necessary And Sufficient Stochastic Seminonparametric Test For Weak Separability," Macroeconomic Dynamics, Cambridge University Press, vol. 13(S2), pages 317-334, September.
    11. Dilaver, Zafer & Hunt, Lester C, 2011. "Modelling and forecasting Turkish residential electricity demand," Energy Policy, Elsevier, vol. 39(6), pages 3117-3127, June.
    12. Matteo Barigozzi & Marc Hallin, 2016. "Generalized dynamic factor models and volatilities: recovering the market volatility shocks," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 33-60, February.
    13. Gabriele Fiorentini & Enrique Sentana & Neil Shephard, 2004. "Likelihood-Based Estimation of Latent Generalized ARCH Structures," Econometrica, Econometric Society, vol. 72(5), pages 1481-1517, September.
    14. Kim, Donggyu & Fan, Jianqing, 2019. "Factor GARCH-Itô models for high-frequency data with application to large volatility matrix prediction," Journal of Econometrics, Elsevier, vol. 208(2), pages 395-417.
    15. Alexander Tsyplakov, 2011. "An introduction to state space modeling (in Russian)," Quantile, Quantile, issue 9, pages 1-24, July.
    16. Wen Chen & Changyi Zhu & Qi Cheung & Siying Wu & Jun Zhang & Jia Cao, 2024. "How does digitization enable green innovation? Evidence from Chinese listed companies," Business Strategy and the Environment, Wiley Blackwell, vol. 33(5), pages 3832-3854, July.
    17. Carlos Trucíos & João H. G. Mazzeu & Marc Hallin & Luiz K. Hotta & Pedro L. Valls Pereira & Mauricio Zevallos, 2022. "Forecasting Conditional Covariance Matrices in High-Dimensional Time Series: A General Dynamic Factor Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(1), pages 40-52, December.
    18. Dilaver, Zafer & Hunt, Lester C., 2011. "Turkish aggregate electricity demand: An outlook to 2020," Energy, Elsevier, vol. 36(11), pages 6686-6696.
    19. David Greasley & Les Oxley, 2010. "Cliometrics And Time Series Econometrics: Some Theory And Applications," Journal of Economic Surveys, Wiley Blackwell, vol. 24(5), pages 970-1042, December.
    20. Babasola Osibo & Simisola Adamo, 2023. "Data Centers and Green Energy: Paving the Way for a Sustainable Digital Future," International Journal of Latest Technology in Engineering, Management & Applied Science, International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS), vol. 12(11), pages 15-30, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4300-:d:401257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.