IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4278-d400721.html
   My bibliography  Save this article

Application of Multi-Parameter Fuzzy Optimization to Enhance Performance of a Regulated Two-Stage Turbocharged Diesel Engine Operating at High Altitude

Author

Listed:
  • Meng Xia

    (School of Transportation Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China)

  • Fujun Zhang

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

Abstract

Air intake and fuel supply conditions are the major factors that affect diesel engine performance at plateau. In a regulated two-stage turbocharged diesel engine, these parameters are reflected as the adjustment of fuel injection mass ( m fuel ), fuel injection advance angle, and bypass valve opening of a high-pressure stage (HP) turbine. Due to the strongly nonlinear nature and complexity of the diesel engine, it is difficult to find the proper parameter combinations. That is why a model-based optimization method is adopted in this paper. The simulation model of a six-cylinder two-stage turbocharged diesel engine is built on the GT-SUITE platform. According to the analysis of diesel engine operation characteristics at high altitude, a fuzzy optimization algorithm is proposed based on a fuzzy logic controller and is realized in a MATLAB/simulink (MATLAB 2014, Mathworks, Natick, MA, USA) environment. Joint optimization of air intake and fuel supply parameters is then performed on the GT-MATLAB co-simulation platform. Results show that engine torque at full load is significantly increased. At the full load point of 2100 r/min, engine power is increased from 256.5 to 319.6 kW, and brake specific fuel consumption (BSFC) is reduced from 243.1 to 222.3 g/(kW·h). Peak torque is increased from 1944.8 to 2173.2 N·m.

Suggested Citation

  • Meng Xia & Fujun Zhang, 2020. "Application of Multi-Parameter Fuzzy Optimization to Enhance Performance of a Regulated Two-Stage Turbocharged Diesel Engine Operating at High Altitude," Energies, MDPI, vol. 13(17), pages 1-12, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4278-:d:400721
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4278/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4278/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mariani, F. & Grimaldi, C.N. & Battistoni, M., 2014. "Diesel engine NOx emissions control: An advanced method for the O2 evaluation in the intake flow," Applied Energy, Elsevier, vol. 113(C), pages 576-588.
    2. Zhao, Jinxing & Xu, Min, 2013. "Fuel economy optimization of an Atkinson cycle engine using genetic algorithm," Applied Energy, Elsevier, vol. 105(C), pages 335-348.
    3. Al-Hinti, I. & Samhouri, M. & Al-Ghandoor, A. & Sakhrieh, A., 2009. "The effect of boost pressure on the performance characteristics of a diesel engine: A neuro-fuzzy approach," Applied Energy, Elsevier, vol. 86(1), pages 113-121, January.
    4. Zhu, Zhenxia & Zhang, Fujun & Li, Changjiang & Wu, Taotao & Han, Kai & Lv, Jianguo & Li, Yunlong & Xiao, Xuelian, 2015. "Genetic algorithm optimization applied to the fuel supply parameters of diesel engines working at plateau," Applied Energy, Elsevier, vol. 157(C), pages 789-797.
    5. Ganapathy, T. & Murugesan, K. & Gakkhar, R.P., 2009. "Performance optimization of Jatropha biodiesel engine model using Taguchi approach," Applied Energy, Elsevier, vol. 86(11), pages 2476-2486, November.
    6. Ogaji, S.O.T. & Marinai, L. & Sampath, S. & Singh, R. & Prober, S.D., 2005. "Gas-turbine fault diagnostics: a fuzzy-logic approach," Applied Energy, Elsevier, vol. 82(1), pages 81-89, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Batyr Orazbayev & Yerbol Ospanov & Valentina Makhatova & Lazzat Salybek & Zhanat Abdugulova & Zhumazhan Kulmagambetova & Salamat Suleimenova & Kulman Orazbayeva, 2023. "Methods of Fuzzy Multi-Criteria Decision Making for Controlling the Operating Modes of the Stabilization Column of the Primary Oil-Refining Unit," Mathematics, MDPI, vol. 11(13), pages 1-20, June.
    2. Batyr Orazbayev & Ainur Zhumadillayeva & Kulman Orazbayeva & Sandugash Iskakova & Balbupe Utenova & Farit Gazizov & Svetlana Ilyashenko & Olga Afanaseva, 2022. "The System of Models and Optimization of Operating Modes of a Catalytic Reforming Unit Using Initial Fuzzy Information," Energies, MDPI, vol. 15(4), pages 1-25, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roy, Sumit & Ghosh, Ashmita & Das, Ajoy Kumar & Banerjee, Rahul, 2015. "Development and validation of a GEP model to predict the performance and exhaust emission parameters of a CRDI assisted single cylinder diesel engine coupled with EGR," Applied Energy, Elsevier, vol. 140(C), pages 52-64.
    2. Tadros, M. & Ventura, M. & Guedes Soares, C., 2019. "Optimization procedure to minimize fuel consumption of a four-stroke marine turbocharged diesel engine," Energy, Elsevier, vol. 168(C), pages 897-908.
    3. Saravanan, S. & Kaliyanasunder, R. & Rajesh Kumar, B. & Lakshmi Narayana Rao, G., 2020. "Effect of design parameters on performance and emissions of a CI engine operated with diesel-biodiesel- higher alcohol blends," Renewable Energy, Elsevier, vol. 148(C), pages 425-436.
    4. Li, Yangyang & Zhou, Shi & Liu, Jingping & Tong, Ji & Dang, Jian & Yang, Fuyuan & Ouyang, Minggao, 2023. "Multi-objective optimization of the Atkinson cycle gasoline engine using NSGA Ⅲ coupled with support vector machine and back-propagation algorithm," Energy, Elsevier, vol. 262(PA).
    5. Yi Dong & Jianmin Liu & Yanbin Liu & Xinyong Qiao & Xiaoming Zhang & Ying Jin & Shaoliang Zhang & Tianqi Wang & Qi Kang, 2020. "A RBFNN & GACMOO-Based Working State Optimization Control Study on Heavy-Duty Diesel Engine Working in Plateau Environment," Energies, MDPI, vol. 13(1), pages 1-24, January.
    6. Bateni, Hamed & Karimi, Keikhosro & Zamani, Akram & Benakashani, Fatemeh, 2014. "Castor plant for biodiesel, biogas, and ethanol production with a biorefinery processing perspective," Applied Energy, Elsevier, vol. 136(C), pages 14-22.
    7. Han, Sangwook & Kim, Jaeheun & Bae, Choongsik, 2014. "Effect of air–fuel mixing quality on characteristics of conventional and low temperature diesel combustion," Applied Energy, Elsevier, vol. 119(C), pages 454-466.
    8. Xiaodong Chang & Jinquan Huang & Feng Lu, 2017. "Health Parameter Estimation with Second-Order Sliding Mode Observer for a Turbofan Engine," Energies, MDPI, vol. 10(7), pages 1-19, July.
    9. Bose, Probir Kumar & Deb, Madhujit & Banerjee, Rahul & Majumder, Arindam, 2013. "Multi objective optimization of performance parameters of a single cylinder diesel engine running with hydrogen using a Taguchi-fuzzy based approach," Energy, Elsevier, vol. 63(C), pages 375-386.
    10. John Jairo Ceballos & Andrés Melgar & Francisco V. Tinaut, 2021. "Influence of Environmental Changes Due to Altitude on Performance, Fuel Consumption and Emissions of a Naturally Aspirated Diesel Engine," Energies, MDPI, vol. 14(17), pages 1-41, August.
    11. Rossi, Francesco & Velázquez, David, 2015. "A methodology for energy savings verification in industry with application for a CHP (combined heat and power) plant," Energy, Elsevier, vol. 89(C), pages 528-544.
    12. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    13. Dwivedi, Gaurav & Jain, Siddharth & Sharma, M.P., 2011. "Impact analysis of biodiesel on engine performance—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4633-4641.
    14. İhsan Yanıkoğlu & Erinç Albey & Serkan Okçuoğlu, 2022. "Robust Parameter Design and Optimization for Quality Engineering," SN Operations Research Forum, Springer, vol. 3(1), pages 1-36, March.
    15. Kang, Sae Byul & Kim, Jong Jin & Im, Yong Hoon, 2013. "An experimental investigation of a direct burning of crude Jatropha oil (CJO) and pitch in a commercial boiler system," Renewable Energy, Elsevier, vol. 54(C), pages 8-12.
    16. Kumar, Thanikasalam & Mohsin, Rahmat & Majid, Zulkifli Abd. & Ghafir, Mohammad Fahmi Abdul & Wash, Ananth Manickam, 2020. "Experimental study of the anti-knock efficiency of high-octane fuels in spark ignited aircraft engine using response surface methodology," Applied Energy, Elsevier, vol. 259(C).
    17. Ma, Zetai & Xie, Wenping & Xiang, Hanchun & Zhang, Kun & Yang, Mingyang & Deng, Kangyao, 2023. "Thermodynamic analysis of power recovery of marine diesel engine under high exhaust backpressure by additional electrically driven compressor," Energy, Elsevier, vol. 266(C).
    18. Liu, Qi & Guo, Tao & Fu, Jianqin & Dai, Hongliang & Liu, Jingping, 2022. "Experimental study on the effects of injection parameters and exhaust gas recirculation on combustion, emission and performance of Atkinson cycle gasoline direct-injection engine," Energy, Elsevier, vol. 238(PB).
    19. Najjar, Yousef S.H., 2011. "Comparison of performance of a Greener direct-injection stratified-charge (DISC) engine with a spark-ignition engine using a simplified model," Energy, Elsevier, vol. 36(7), pages 4136-4143.
    20. Dawodu, Folasegun A. & Ayodele, Olubunmi & Xin, Jiayu & Zhang, Suojiang & Yan, Dongxia, 2014. "Effective conversion of non-edible oil with high free fatty acid into biodiesel by sulphonated carbon catalyst," Applied Energy, Elsevier, vol. 114(C), pages 819-826.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4278-:d:400721. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.