IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i16p4192-d398735.html
   My bibliography  Save this article

Mirroring Solar Radiation Emitting Heat Toward the Universe: Design, Production, and Preliminary Testing of a Metamaterial Based Daytime Passive Radiative Cooler

Author

Listed:
  • Anna Castaldo

    (ENEA-TERIN-STSN-SCIS Portici, 80055 Naples, Italy)

  • Giuseppe Vitiello

    (ENEA-TERIN-STSN-SCIS Portici, 80055 Naples, Italy)

  • Emilia Gambale

    (ENEA-TERIN-STSN-SCIS Portici, 80055 Naples, Italy)

  • Michela Lanchi

    (ENEA-TERIN-STSN-SCIS Casaccia, 00123 Rome, Italy)

  • Manuela Ferrara

    (ENEA-TERIN-FSN-DIN Portici, 80055 Naples, Italy)

  • Michele Zinzi

    (ENEA-TERIN-SEN Casaccia, 00123 Rome, Italy)

Abstract

A radiative cooling device, based on a metamaterial able to mirror solar radiation and emit heat toward the universe by the transparency window of the atmosphere (8–13 µm), reaching and maintaining temperatures below ambient air, without any electricity input (passive), could have a significant impact on energy consumption of buildings and positive effects on the global warming prevention. A similar device is expected to properly work if exposed to the nocturnal sky, but during the daytime, its efficacy could be affected by its own heating under direct sunlight. In scientific literature, there are only few evidences of lab scale devices, acting as passive radiative cooling at daytime, and remaining few degrees below ambient air. This work describes the proof of concept of a daytime passive radiative cooler, entirely developed in ENEA labs, capable to reach well 12 °C under ambient temperature. In particular, the prototypal device is an acrylic box case, filled with noble gas, whose top face is a metamaterial deposited on a metal substrate covered with a transparent polymeric film. The metamaterial here tested, obtained by means of a semi-empirical approach, is a spectrally selective coating based on low cost materials, deposited as thin films by sputtering on the metallic substrate, that emits selectively in the 8–13 µm region, reflecting elsewhere UV_VIS_NIR_IR electromagnetic radiation. The prototype during the daytime sky could reach temperatures well beyond ambient temperature. However, the proof of concept experiment performed in a bright clear June day has evidenced some limitations. A critical analysis of the obtained experimental results has done, in order to individuate design revisions for the device and to identify future metamaterial improvements.

Suggested Citation

  • Anna Castaldo & Giuseppe Vitiello & Emilia Gambale & Michela Lanchi & Manuela Ferrara & Michele Zinzi, 2020. "Mirroring Solar Radiation Emitting Heat Toward the Universe: Design, Production, and Preliminary Testing of a Metamaterial Based Daytime Passive Radiative Cooler," Energies, MDPI, vol. 13(16), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4192-:d:398735
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/16/4192/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/16/4192/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vazrik Chiloyan & Jivtesh Garg & Keivan Esfarjani & Gang Chen, 2015. "Transition from near-field thermal radiation to phonon heat conduction at sub-nanometre gaps," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    2. Chia-Hsin Liu & Chyung Ay & Chun-Yu Tsai & Maw-Tien Lee, 2019. "The Application of Passive Radiative Cooling in Greenhouses," Sustainability, MDPI, vol. 11(23), pages 1-9, November.
    3. Lu, Xing & Xu, Peng & Wang, Huilong & Yang, Tao & Hou, Jin, 2016. "Cooling potential and applications prospects of passive radiative cooling in buildings: The current state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1079-1097.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Castaldo & Emilia Gambale & Giuseppe Vitiello, 2021. "Aluminium Nitride Doping for Solar Mirrors Self-Cleaning Coatings," Energies, MDPI, vol. 14(20), pages 1-13, October.
    2. Liu, Jie & Xu, Chengfeng & Ao, Xianze & Lu, Kegui & Zhao, Bin & Pei, Gang, 2022. "A dual-layer polymer-based film for all-day sub-ambient radiative sky cooling," Energy, Elsevier, vol. 254(PA).
    3. Pirvaram, Atousa & Talebzadeh, Nima & Leung, Siu Ning & O'Brien, Paul G., 2022. "Radiative cooling for buildings: A review of techno-enviro-economics and life-cycle assessment methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Junwei & Zhang, Ji & Zhang, Debao & Jiao, Shifei & Xing, Jincheng & Tang, Huajie & Zhang, Ying & Li, Shuai & Zhou, Zhihua & Zuo, Jian, 2020. "Sub-ambient radiative cooling with wind cover," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    2. Gopalakrishna Gangisetty & Ron Zevenhoven, 2023. "A Review of Nanoparticle Material Coatings in Passive Radiative Cooling Systems Including Skylights," Energies, MDPI, vol. 16(4), pages 1-59, February.
    3. Vall, Sergi & Castell, Albert, 2017. "Radiative cooling as low-grade energy source: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 803-820.
    4. Yan, Tian & Xu, Dawei & Meng, Jing & Xu, Xinhua & Yu, Zhongyi & Wu, Huijun, 2024. "A review of radiative sky cooling technology and its application in building systems," Renewable Energy, Elsevier, vol. 220(C).
    5. Katramiz, Elvire & Al Jebaei, Hussein & Alotaibi, Sorour & Chakroun, Walid & Ghaddar, Nesreen & Ghali, Kamel, 2020. "Sustainable cooling system for Kuwait hot climate combining diurnal radiative cooling and indirect evaporative cooling system," Energy, Elsevier, vol. 213(C).
    6. Hu, Tianxiang & Kwan, Trevor Hocksun & Pei, Gang, 2022. "An all-day cooling system that combines solar absorption chiller and radiative cooling," Renewable Energy, Elsevier, vol. 186(C), pages 831-844.
    7. Miranda, Nicole D. & Renaldi, Renaldi & Khosla, Radhika & McCulloch, Malcolm D., 2021. "Bibliometric analysis and landscape of actors in passive cooling research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    8. Pan, Aiqiang & Chen, Yi & Lin, Kaixin & Bai, Shengxi & Ho, Tsz Chung & Tso, Chi Yan, 2024. "Numerical investigations of novel hybrid solid desiccant cooling systems combined with passive radiative cooling panels," Renewable Energy, Elsevier, vol. 226(C).
    9. Antonio Dominguez-Delgado & Helena Domínguez-Torres & Carlos-Antonio Domínguez-Torres, 2020. "Energy and Economic Life Cycle Assessment of Cool Roofs Applied to the Refurbishment of Social Housing in Southern Spain," Sustainability, MDPI, vol. 12(14), pages 1-35, July.
    10. Ahmed, Salman & Li, Senji & Li, Zhenpeng & Xiao, Gang & Ma, Tao, 2022. "Enhanced radiative cooling of solar cells by integration with heat pipe," Applied Energy, Elsevier, vol. 308(C).
    11. Zhao, Bin & Hu, Mingke & Ao, Xianze & Chen, Nuo & Xuan, Qingdong & Su, Yuehong & Pei, Gang, 2019. "A novel strategy for a building-integrated diurnal photovoltaic and all-day radiative cooling system," Energy, Elsevier, vol. 183(C), pages 892-900.
    12. Hu, Mingke & Zhao, Bin & Ao, Xianze & Su, Yuehong & Pei, Gang, 2018. "Parametric analysis and annual performance evaluation of an air-based integrated solar heating and radiative cooling collector," Energy, Elsevier, vol. 165(PA), pages 811-824.
    13. Mingran Mao & Chunzao Feng & Junxian Pei & Huidong Liu & Haifeng Jiang, 2023. "A Triple-Layer Membrane with Hybrid Evaporation and Radiation for Building Cooling," Energies, MDPI, vol. 16(6), pages 1-11, March.
    14. Zhao, Dongliang & Martini, Christine Elizabeth & Jiang, Siyu & Ma, Yaoguang & Zhai, Yao & Tan, Gang & Yin, Xiaobo & Yang, Ronggui, 2017. "Development of a single-phase thermosiphon for cold collection and storage of radiative cooling," Applied Energy, Elsevier, vol. 205(C), pages 1260-1269.
    15. Zhao, Bin & Hu, Mingke & Ao, Xianze & Chen, Nuo & Pei, Gang, 2019. "Radiative cooling: A review of fundamentals, materials, applications, and prospects," Applied Energy, Elsevier, vol. 236(C), pages 489-513.
    16. Pirvaram, Atousa & Talebzadeh, Nima & Leung, Siu Ning & O'Brien, Paul G., 2022. "Radiative cooling for buildings: A review of techno-enviro-economics and life-cycle assessment methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    17. Zhang, Ji & Yuan, Jianjuan & Liu, Junwei & Zhou, Zhihua & Sui, Jiyuan & Xing, Jincheng & Zuo, Jian, 2021. "Cover shields for sub-ambient radiative cooling: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    18. Hu, Mingke & Zhao, Bin & Ao, Xianze & Feng, Junsheng & Cao, Jingyu & Su, Yuehong & Pei, Gang, 2019. "Experimental study on a hybrid photo-thermal and radiative cooling collector using black acrylic paint as the panel coating," Renewable Energy, Elsevier, vol. 139(C), pages 1217-1226.
    19. Teen-Hang Meen & Yusuke Matsumoto & Ming-Shyan Wang, 2020. "Selected Papers From 2019 IEEE Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability (IEEE ECBIOS 2019)," Sustainability, MDPI, vol. 12(1), pages 1-5, January.
    20. Jie Chen & Yue Fan & Menghan Wang, 2023. "Simplified Calculation of T sol Based on Dynamic Numerical Simulation of T sky in Diverse Climates in China," Sustainability, MDPI, vol. 15(1), pages 1-14, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4192-:d:398735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.