IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i1p25-d473889.html
   My bibliography  Save this article

Diversity of Segetal Flora in Salix viminalis L. Crops Established on Former Arable and Fallow Lands in Central Poland

Author

Listed:
  • Maria Janicka

    (Agronomy Department, Faculty of Agriculture and Biology, Institute of Agriculture, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland)

  • Aneta Kutkowska

    (Agronomy Department, Faculty of Agriculture and Biology, Institute of Agriculture, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland)

  • Jakub Paderewski

    (Biometry Department, Faculty of Agriculture and Biology, Institute of Agriculture, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland)

Abstract

The flora of willow ( Salix viminalis L.) plantations consists of various plant groups, including plants related to arable land, called segetal plants. Knowledge of this flora is important for maintaining biodiversity in agroecosystems. The aim of the study was to assess the segetal flora of the willow plantations in central Poland, depending on the land use before the establishment of the plantations (arable land or fallow) and the age of the plantations. Moreover, the aim was also to check for the presence of invasive, medicinal, poisonous and melliferous species. The vegetation accompanying willow was identified based on an analysis of 60 phytosociological relevés performed using the Braun-Blanquet method. For each species, the following parameters were determined: the phytosociological class; family; geographical and historical group; apophyte origin; biological stability; life-form; and status as an invasive, medicinal (herbs), poisonous or melliferous species. The results were statistically processed. Segetal species accounted for 38% of the flora accompanying willow. The plantations on former arable land were richer in segetal species than those on fallow. Mostly, short-lived and native species dominated. In line with the age of the plantations, the number of segetal species decreased. The share of apophytes increased, and anthropophytes decreased. Furthermore, many valuable plants were found among the flora accompanying willow.

Suggested Citation

  • Maria Janicka & Aneta Kutkowska & Jakub Paderewski, 2021. "Diversity of Segetal Flora in Salix viminalis L. Crops Established on Former Arable and Fallow Lands in Central Poland," Agriculture, MDPI, vol. 11(1), pages 1-24, January.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:1:p:25-:d:473889
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/1/25/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/1/25/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cezary A. Kwiatkowski & Małgorzata Haliniarz & Elżbieta Harasim, 2020. "Weed Infestation and Health of Organically Grown Chamomile ( Chamomilla recutita (L.) Rausch.) Depending on Selected Foliar Sprays and Row Spacing," Agriculture, MDPI, vol. 10(5), pages 1-14, May.
    2. Stolarski, Mariusz J. & Niksa, Dariusz & Krzyżaniak, Michał & Tworkowski, Józef & Szczukowski, Stefan, 2019. "Willow productivity from small- and large-scale experimental plantations in Poland from 2000 to 2017," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 461-475.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Monika Grzanka & Łukasz Sobiech & Robert Idziak & Grzegorz Skrzypczak, 2022. "Effect of the Time of Herbicide Application and the Properties of the Spray Solution on the Efficacy of Weed Control in Maize ( Zea mays L.) Cultivation," Agriculture, MDPI, vol. 12(3), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jankowski, Krzysztof Józef & Dubis, Bogdan & Sokólski, Mateusz Mikołaj & Załuski, Dariusz & Bórawski, Piotr & Szempliński, Władysław, 2019. "Biomass yield and energy balance of Virginia fanpetals in different production technologies in north-eastern Poland," Energy, Elsevier, vol. 185(C), pages 612-623.
    2. Stolarski, Mariusz Jerzy & Warmiński, Kazimierz & Krzyżaniak, Michał & Olba–Zięty, Ewelina & Stachowicz, Paweł, 2020. "Energy consumption and heating costs for a detached house over a 12-year period – Renewable fuels versus fossil fuels," Energy, Elsevier, vol. 204(C).
    3. Anna Kocira & Mariola Staniak, 2021. "Weed Ecology and New Approaches for Management," Agriculture, MDPI, vol. 11(3), pages 1-6, March.
    4. Mariusz Jerzy Stolarski & Michał Krzyżaniak & Kazimierz Warmiński & Dariusz Załuski & Ewelina Olba-Zięty, 2020. "Willow Biomass as Energy Feedstock: The Effect of Habitat, Genotype and Harvest Rotation on Thermophysical Properties and Elemental Composition," Energies, MDPI, vol. 13(16), pages 1-17, August.
    5. Dubis, Bogdan & Jankowski, Krzysztof Józef & Sokólski, Mateusz Mikołaj & Załuski, Dariusz & Bórawski, Piotr & Szempliński, Władysław, 2020. "Biomass yield and energy balance of fodder galega in different production technologies: An 11-year field experiment in a large-area farm in Poland," Renewable Energy, Elsevier, vol. 154(C), pages 813-825.
    6. Aneta Bełdycka-Bórawska & Piotr Bórawski & Michał Borychowski & Rafał Wyszomierski & Marek Bartłomiej Bórawski & Tomasz Rokicki & Luiza Ochnio & Krzysztof Jankowski & Bartosz Mickiewicz & James W. Dun, 2021. "Development of Solid Biomass Production in Poland, Especially Pellet, in the Context of the World’s and the European Union’s Climate and Energy Policies," Energies, MDPI, vol. 14(12), pages 1-22, June.
    7. Mateusz Ostolski & Marek Adamczak & Bartosz Brzozowski & Mariusz Jerzy Stolarski, 2021. "Screening of Functional Compounds in Supercritical Carbon Dioxide Extracts from Perennial Herbaceous Crops," Agriculture, MDPI, vol. 11(6), pages 1-14, May.
    8. Mariusz Matyka & Paweł Radzikowski, 2020. "Productivity and Biometric Characteristics of 11 Varieties of Willow Cultivated on Marginal Soil," Agriculture, MDPI, vol. 10(12), pages 1-10, December.
    9. Ben Fradj, Nosra & Jayet, Pierre Alain & Rozakis, Stelios & Georganta, Eleni & Jędrejek, Anna, 2020. "Contribution of agricultural systems to the bioeconomy in Poland: Integration of willow in the context of a stylised CAP diversification," Land Use Policy, Elsevier, vol. 99(C).
    10. Dariusz Mikielewicz & Krzysztof Kosowski & Karol Tucki & Marian Piwowarski & Robert Stępień & Olga Orynycz & Wojciech Włodarski, 2019. "Gas Turbine Cycle with External Combustion Chamber for Prosumer and Distributed Energy Systems," Energies, MDPI, vol. 12(18), pages 1-19, September.
    11. Małgorzata Kozak & Rafał Pudełko, 2021. "Impact Assessment of the Long-Term Fallowed Land on Agricultural Soils and the Possibility of Their Return to Agriculture," Agriculture, MDPI, vol. 11(2), pages 1-16, February.
    12. Moritz Von Cossel & Iris Lewandowski & Berien Elbersen & Igor Staritsky & Michiel Van Eupen & Yasir Iqbal & Stefan Mantel & Danilo Scordia & Giorgio Testa & Salvatore Luciano Cosentino & Oksana Maliar, 2019. "Marginal Agricultural Land Low-Input Systems for Biomass Production," Energies, MDPI, vol. 12(16), pages 1-25, August.
    13. Stolarski, Mariusz Jerzy & Warmiński, Kazimierz & Krzyżaniak, Michał & Olba–Zięty, Ewelina & Akincza, Marta, 2020. "Bioenergy technologies and biomass potential vary in Northern European countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    14. Mariusz Jerzy Stolarski & Michał Krzyżaniak & Dariusz Załuski & Józef Tworkowski & Stefan Szczukowski, 2020. "Effects of Site, Genotype and Subsequent Harvest Rotation on Willow Productivity," Agriculture, MDPI, vol. 10(9), pages 1-17, September.
    15. Cezary A. Kwiatkowski & Elżbieta Harasim & Beata Feledyn-Szewczyk & Jarosław Stalenga & Marta Jańczak-Pieniążek & Jan Buczek & Agnieszka Nnolim, 2022. "Productivity and Quality of Chamomile ( Chamomilla recutita (L.) Rausch.) Grown in an Organic System Depending on Foliar Biopreparations and Row Spacing," Agriculture, MDPI, vol. 12(10), pages 1-16, September.
    16. Mariusz Jerzy Stolarski & Stefan Szczukowski & Michał Krzyżaniak & Józef Tworkowski, 2020. "Energy Value of Yield and Biomass Quality in a 7-Year Rotation of Willow Cultivated on Marginal Soil," Energies, MDPI, vol. 13(9), pages 1-12, April.
    17. Dubis, Bogdan & Jankowski, Krzysztof Józef & Załuski, Dariusz & Sokólski, Mateusz, 2020. "The effect of sewage sludge fertilization on the biomass yield of giant miscanthus and the energy balance of the production process," Energy, Elsevier, vol. 206(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:1:p:25-:d:473889. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.