IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i16p4101-d396099.html
   My bibliography  Save this article

Characterization of Chemically and Physically Activated Carbons from Lignocellulosic Ethanol Lignin-Rich Stream via Hydrothermal Carbonization and Slow Pyrolysis Pretreatment

Author

Listed:
  • Edoardo Miliotti

    (Renewable Energy Consortium for Research and Demonstration—RE-CORD, Viale Kennedy 182, Scarperia, 50038 Florence, Italy)

  • Luca Rosi

    (Renewable Energy Consortium for Research and Demonstration—RE-CORD, Viale Kennedy 182, Scarperia, 50038 Florence, Italy
    Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy)

  • Lorenzo Bettucci

    (Renewable Energy Consortium for Research and Demonstration—RE-CORD, Viale Kennedy 182, Scarperia, 50038 Florence, Italy)

  • Giulia Lotti

    (Renewable Energy Consortium for Research and Demonstration—RE-CORD, Viale Kennedy 182, Scarperia, 50038 Florence, Italy)

  • Andrea Maria Rizzo

    (Renewable Energy Consortium for Research and Demonstration—RE-CORD, Viale Kennedy 182, Scarperia, 50038 Florence, Italy)

  • David Chiaramonti

    (Renewable Energy Consortium for Research and Demonstration—RE-CORD, Viale Kennedy 182, Scarperia, 50038 Florence, Italy
    “Galileo Ferraris” Energy Department, Polytechnic of Turin, Corso Duca Degli Abruzzi 24, I-10129 Torino, Italy)

Abstract

The aim of the present work is to investigate the possibility of producing activated carbons from the residual lignin stream of lignocellulosic ethanol biorefineries, as this represents an optimal opportunity to exploit a residual and renewable material in the perspective of sustainable bioeconomy, increasing biorefinery incomes by producing value-added bioproducts in conjunction with biofuels. Activated carbons (ACs) were produced via chemical (KOH) and physical (CO 2 ) activation. Char samples were obtained by slow pyrolysis (SP) and hydrothermal carbonization (HTC). Several HTC experiments were carried out by varying residence time (0.5–3 h) and reaction temperature (200–270 °C), in order to evaluate their influence on the product yield and on the morphological characteristics of the hydrochar (specific surface area, total pore volume and pore size distribution). ACs from hydrochars were compared with those obtained from pyrochar (via physical activation) and from the raw lignin-rich stream (via chemical activation). In both cases, by increasing the HTC temperature, the specific surface of the resulting activated carbons decreased from 630 to 77 m 2 g −1 for physical activation and from 675 to 81 m 2 g −1 for chemical activation, indicating that an increase in the severity of the hydrothermal pretreatment is deleterious for the activated carbons quality. In addition, the HTC aqueous samples were analyzed, with GC-MS and GC-FID. The results suggest that at low temperatures the reaction mechanisms are dominated by hydrolysis, instead when the temperature is increased to 270 °C, a more complex network of reactions takes place among which decarboxylation.

Suggested Citation

  • Edoardo Miliotti & Luca Rosi & Lorenzo Bettucci & Giulia Lotti & Andrea Maria Rizzo & David Chiaramonti, 2020. "Characterization of Chemically and Physically Activated Carbons from Lignocellulosic Ethanol Lignin-Rich Stream via Hydrothermal Carbonization and Slow Pyrolysis Pretreatment," Energies, MDPI, vol. 13(16), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4101-:d:396099
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/16/4101/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/16/4101/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edoardo Miliotti & Stefano Dell’Orco & Giulia Lotti & Andrea Maria Rizzo & Luca Rosi & David Chiaramonti, 2019. "Lignocellulosic Ethanol Biorefinery: Valorization of Lignin-Rich Stream through Hydrothermal Liquefaction," Energies, MDPI, vol. 12(4), pages 1-27, February.
    2. Chiaramonti, David & Goumas, Theodor, 2019. "Impacts on industrial-scale market deployment of advanced biofuels and recycled carbon fuels from the EU Renewable Energy Directive II," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Stefano Dell’Orco & Edoardo Miliotti & Giulia Lotti & Andrea Maria Rizzo & Luca Rosi & David Chiaramonti, 2020. "Hydrothermal Depolymerization of Biorefinery Lignin-Rich Streams: Influence of Reaction Conditions and Catalytic Additives on the Organic Monomers Yields in Biocrude and Aqueous Phase," Energies, MDPI, vol. 13(5), pages 1-22, March.
    4. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mirosław Kwiatkowski, 2021. "Computer Analysis of the Effects of Time and Gas Atmosphere of the Chemical Activation on the Development of the Porous Structure of Activated Carbons Derived from Oil Palm Shell," Energies, MDPI, vol. 14(19), pages 1-10, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikolaos Montesantos & Marco Maschietti, 2020. "Supercritical Carbon Dioxide Extraction of Lignocellulosic Bio-Oils: The Potential of Fuel Upgrading and Chemical Recovery," Energies, MDPI, vol. 13(7), pages 1-35, April.
    2. Giuseppe Maggiotto & Gianpiero Colangelo & Marco Milanese & Arturo de Risi, 2023. "Thermochemical Technologies for the Optimization of Olive Wood Biomass Energy Exploitation: A Review," Energies, MDPI, vol. 16(19), pages 1-17, September.
    3. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    4. Sui, Haiqing & Chen, Jianfeng & Cheng, Wei & Zhu, Youjian & Zhang, Wennan & Hu, Junhao & Jiang, Hao & Shao, Jing'ai & Chen, Hanping, 2024. "Effect of oxidative torrefaction on fuel and pelletizing properties of agricultural biomass in comparison with non-oxidative torrefaction," Renewable Energy, Elsevier, vol. 226(C).
    5. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    6. Mäkelä, Mikko & Yoshikawa, Kunio, 2016. "Simulating hydrothermal treatment of sludge within a pulp and paper mill," Applied Energy, Elsevier, vol. 173(C), pages 177-183.
    7. Yao, Zhongliang & Ma, Xiaoqian & Xiao, Zhiyuan, 2020. "The effect of two pretreatment levels on the pyrolysis characteristics of water hyacinth," Renewable Energy, Elsevier, vol. 151(C), pages 514-527.
    8. Iva Ridjan Skov & Noémi Schneider & Gerald Schweiger & Josef-Peter Schöggl & Alfred Posch, 2021. "Power-to-X in Denmark: An Analysis of Strengths, Weaknesses, Opportunities and Threats," Energies, MDPI, vol. 14(4), pages 1-14, February.
    9. Tobias Pröll & Florian Zerobin, 2019. "Biomass-based negative emission technology options with combined heat and power generation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(7), pages 1307-1324, October.
    10. Jafri, Yawer & Wetterlund, Elisabeth & Mesfun, Sennai & Rådberg, Henrik & Mossberg, Johanna & Hulteberg, Christian & Furusjö, Erik, 2020. "Combining expansion in pulp capacity with production of sustainable biofuels – Techno-economic and greenhouse gas emissions assessment of drop-in fuels from black liquor part-streams," Applied Energy, Elsevier, vol. 279(C).
    11. Tariqul Islam & Yanliang Li & Hefa Cheng, 2021. "Biochars and Engineered Biochars for Water and Soil Remediation: A Review," Sustainability, MDPI, vol. 13(17), pages 1-25, September.
    12. Chater, Hamza & Asbik, Mohamed, 2024. "Innovative mathematical approach for hydrothermal carbonization process using an inverse method: Experimental analysis, rheology behavior, and numerical comparative investigation," Energy, Elsevier, vol. 290(C).
    13. Aragón-Briceño, C.I. & Pozarlik, A.K. & Bramer, E.A. & Niedzwiecki, Lukasz & Pawlak-Kruczek, H. & Brem, G., 2021. "Hydrothermal carbonization of wet biomass from nitrogen and phosphorus approach: A review," Renewable Energy, Elsevier, vol. 171(C), pages 401-415.
    14. Leslie Lara-Ramos & Ana Cervera-Mata & Jesús Fernández-Bayo & Miguel Navarro-Alarcón & Gabriel Delgado & Alejandro Fernández-Arteaga, 2023. "Hydrochars Derived from Spent Coffee Grounds as Zn Bio-Chelates for Agronomic Biofortification," Sustainability, MDPI, vol. 15(13), pages 1-13, July.
    15. Lee, Jechan & Kim, Soosan & You, Siming & Park, Young-Kwon, 2023. "Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    16. Baghel, Paramjeet & Sakhiya, Anil Kumar & Kaushal, Priyanka, 2022. "Influence of temperature on slow pyrolysis of Prosopis Juliflora: An experimental and thermodynamic approach," Renewable Energy, Elsevier, vol. 185(C), pages 538-551.
    17. Eunhye Song & Ho Kim & Kyung Woo Kim & Young-Man Yoon, 2023. "Characteristic Evaluation of Different Carbonization Processes for Hydrochar, Torrefied Char, and Biochar Produced from Cattle Manure," Energies, MDPI, vol. 16(7), pages 1-14, April.
    18. Poritosh Roy & Animesh Dutta & Jim Gallant, 2018. "Hydrothermal Carbonization of Peat Moss and Herbaceous Biomass (Miscanthus): A Potential Route for Bioenergy," Energies, MDPI, vol. 11(10), pages 1-14, October.
    19. Neel Patel & Bishnu Acharya & Prabir Basu, 2021. "Hydrothermal Carbonization (HTC) of Seaweed (Macroalgae) for Producing Hydrochar," Energies, MDPI, vol. 14(7), pages 1-16, March.
    20. Surup, Gerrit Ralf & Leahy, James J. & Timko, Michael T. & Trubetskaya, Anna, 2020. "Hydrothermal carbonization of olive wastes to produce renewable, binder-free pellets for use as metallurgical reducing agents," Renewable Energy, Elsevier, vol. 155(C), pages 347-357.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4101-:d:396099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.