IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p9190-d993048.html
   My bibliography  Save this article

Data Compensation with Gaussian Processes Regression: Application in Smart Building’s Sensor Network

Author

Listed:
  • Anh Tuan Phan

    (Energy Department, University of Science and Technology of Hanoi, VAST, Hanoi 11355, Vietnam)

  • Thi Tuyet Hong Vu

    (Energy Department, University of Science and Technology of Hanoi, VAST, Hanoi 11355, Vietnam)

  • Dinh Quang Nguyen

    (Institute of Energy and Science, Vietnam Academy Science and Technology, Hanoi 11355, Vietnam)

  • Eleonora Riva Sanseverino

    (Department of Engineering, University of Palermo, 90128 Palermo, Italy)

  • Hang Thi-Thuy Le

    (Institute of Energy and Science, Vietnam Academy Science and Technology, Hanoi 11355, Vietnam
    Department of Engineering, University of Palermo, 90128 Palermo, Italy)

  • Van Cong Bui

    (Electronics Faculty, Vietnam-Korea Vocational College of Hanoi City, Hanoi 12312, Vietnam)

Abstract

Data play an essential role in the optimal control of smart buildings’ operation, especially in building energy-management for the target of nearly zero buildings. The building monitoring system is in charge of collecting and managing building data. However, device imperfections and failures of the monitoring system are likely to produce low-quality data, such as data loss and inconsistent data, which then seriously affect the control quality of the buildings. This paper proposes a new approach based on Gaussian process regression for data-quality monitoring and sensor network data compensation in smart buildings. The proposed method is proven to effectively detect and compensate for low-quality data thanks to the application of data analysis to the energy management monitoring system of a building model in Viet Nam. The research results provide a good opportunity to improve the efficiency of building energy-management systems and support the development of low-cost smart buildings.

Suggested Citation

  • Anh Tuan Phan & Thi Tuyet Hong Vu & Dinh Quang Nguyen & Eleonora Riva Sanseverino & Hang Thi-Thuy Le & Van Cong Bui, 2022. "Data Compensation with Gaussian Processes Regression: Application in Smart Building’s Sensor Network," Energies, MDPI, vol. 15(23), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9190-:d:993048
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/9190/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/9190/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Antonio Paone & Jean-Philippe Bacher, 2018. "The Impact of Building Occupant Behavior on Energy Efficiency and Methods to Influence It: A Review of the State of the Art," Energies, MDPI, vol. 11(4), pages 1-19, April.
    2. Farinaz Behrooz & Norman Mariun & Mohammad Hamiruce Marhaban & Mohd Amran Mohd Radzi & Abdul Rahman Ramli, 2018. "Review of Control Techniques for HVAC Systems—Nonlinearity Approaches Based on Fuzzy Cognitive Maps," Energies, MDPI, vol. 11(3), pages 1-41, February.
    3. Das, Utpal Kumar & Tey, Kok Soon & Seyedmahmoudian, Mehdi & Mekhilef, Saad & Idris, Moh Yamani Idna & Van Deventer, Willem & Horan, Bend & Stojcevski, Alex, 2018. "Forecasting of photovoltaic power generation and model optimization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 912-928.
    4. Yuan, Jianjuan & Zhou, Zhihua & Tang, Huajie & Wang, Chendong & Lu, Shilei & Han, Zhao & Zhang, Ji & Sheng, Ying, 2020. "Identification heat user behavior for improving the accuracy of heating load prediction model based on wireless on-off control system," Energy, Elsevier, vol. 199(C).
    5. Israr Ullah & Rashid Ahmad & DoHyeun Kim, 2018. "A Prediction Mechanism of Energy Consumption in Residential Buildings Using Hidden Markov Model," Energies, MDPI, vol. 11(2), pages 1-20, February.
    6. Abhinandana Boodi & Karim Beddiar & Yassine Amirat & Mohamed Benbouzid, 2022. "Building Thermal-Network Models: A Comparative Analysis, Recommendations, and Perspectives," Energies, MDPI, vol. 15(4), pages 1-27, February.
    7. Hanany Tolba & Nouha Dkhili & Julien Nou & Julien Eynard & Stéphane Thil & Stéphane Grieu, 2020. "Multi-Horizon Forecasting of Global Horizontal Irradiance Using Online Gaussian Process Regression: A Kernel Study," Energies, MDPI, vol. 13(16), pages 1-23, August.
    8. Foster Lubbe & Jacques Maritz & Thomas Harms, 2020. "Evaluating the Potential of Gaussian Process Regression for Solar Radiation Forecasting: A Case Study," Energies, MDPI, vol. 13(20), pages 1-18, October.
    9. Abhinandana Boodi & Karim Beddiar & Yassine Amirat & Mohamed Benbouzid, 2020. "Simplified Building Thermal Model Development and Parameters Evaluation Using a Stochastic Approach," Energies, MDPI, vol. 13(11), pages 1-23, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Varaha Satra Bharath Kurukuru & Ahteshamul Haque & Mohammed Ali Khan & Subham Sahoo & Azra Malik & Frede Blaabjerg, 2021. "A Review on Artificial Intelligence Applications for Grid-Connected Solar Photovoltaic Systems," Energies, MDPI, vol. 14(15), pages 1-35, August.
    2. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    3. Wei, Ziqing & Ren, Fukang & Zhu, Yikang & Yue, Bao & Ding, Yunxiao & Zheng, Chunyuan & Li, Bin & Zhai, Xiaoqiang, 2022. "Data-driven two-step identification of building thermal characteristics: A case study of office building," Applied Energy, Elsevier, vol. 326(C).
    4. Alejandra Aversa & Luis Ballestero & Miguel Chen Austin, 2022. "Highlighting the Probabilistic Behavior of Occupants’ Preferences in Energy Consumption by Integrating a Thermal Comfort Controller in a Tropical Climate," Sustainability, MDPI, vol. 14(15), pages 1-16, August.
    5. Kontoleon, Karolos J. & Saboor, Shaik & Mazzeo, Domenico & Ahmad, Jawad & Cuce, Erdem, 2023. "Thermal sensitivity and potential cooling-related energy saving of masonry walls through the lens of solar heat-rejecting paints at varying orientations," Applied Energy, Elsevier, vol. 329(C).
    6. Juana Isabel Méndez & Adán Medina & Pedro Ponce & Therese Peffer & Alan Meier & Arturo Molina, 2022. "Evolving Gamified Smart Communities in Mexico to Save Energy in Communities through Intelligent Interfaces," Energies, MDPI, vol. 15(15), pages 1-29, July.
    7. Anass Berouine & Radouane Ouladsine & Mohamed Bakhouya & Mohamed Essaaidi, 2020. "Towards a Real-Time Predictive Management Approach of Indoor Air Quality in Energy-Efficient Buildings," Energies, MDPI, vol. 13(12), pages 1-16, June.
    8. Verdone, Alessio & Scardapane, Simone & Panella, Massimo, 2024. "Explainable Spatio-Temporal Graph Neural Networks for multi-site photovoltaic energy production," Applied Energy, Elsevier, vol. 353(PB).
    9. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.
    10. Rafiq Asghar & Francesco Riganti Fulginei & Hamid Wadood & Sarmad Saeed, 2023. "A Review of Load Frequency Control Schemes Deployed for Wind-Integrated Power Systems," Sustainability, MDPI, vol. 15(10), pages 1-29, May.
    11. Javier López Gómez & Ana Ogando Martínez & Francisco Troncoso Pastoriza & Lara Febrero Garrido & Enrique Granada Álvarez & José Antonio Orosa García, 2020. "Photovoltaic Power Prediction Using Artificial Neural Networks and Numerical Weather Data," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    12. Chengmin Wang & Guangji Li & Imran Ali & Hongchao Zhang & Han Tian & Jian Lu, 2022. "The Efficiency Prediction of the Laser Charging Based on GA-BP," Energies, MDPI, vol. 15(9), pages 1-12, April.
    13. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    14. Jakob Carlander & Bahram Moshfegh & Jan Akander & Fredrik Karlsson, 2020. "Effects on Energy Demand in an Office Building Considering Location, Orientation, Façade Design and Internal Heat Gains—A Parametric Study," Energies, MDPI, vol. 13(23), pages 1-22, November.
    15. Anna Mutule & Marcos Domingues & Fernando Ulloa-Vásquez & Dante Carrizo & Luis García-Santander & Ana-Maria Dumitrescu & Diego Issicaba & Lucas Melo, 2021. "Implementing Smart City Technologies to Inspire Change in Consumer Energy Behaviour," Energies, MDPI, vol. 14(14), pages 1-15, July.
    16. Siripat Somchit & Palamy Thongbouasy & Chitchai Srithapon & Rongrit Chatthaworn, 2023. "Optimal Transmission Expansion Planning with Long-Term Solar Photovoltaic Generation Forecast," Energies, MDPI, vol. 16(4), pages 1-17, February.
    17. Margarete Afonso de Sousa Guilhon Araujo & Soraida Aguilar & Reinaldo Castro Souza & Fernando Luiz Cyrino Oliveira, 2024. "Global Horizontal Irradiance in Brazil: A Comparative Study of Reanalysis Datasets with Ground-Based Data," Energies, MDPI, vol. 17(20), pages 1-25, October.
    18. Xiao, Zenan & Huang, Xiaoqiao & Liu, Jun & Li, Chengli & Tai, Yonghang, 2023. "A novel method based on time series ensemble model for hourly photovoltaic power prediction," Energy, Elsevier, vol. 276(C).
    19. Kiguchi, Y. & Weeks, M. & Arakawa, R., 2021. "Predicting winners and losers under time-of-use tariffs using smart meter data," Energy, Elsevier, vol. 236(C).
    20. Krebs-Moberg, Miles & Pitz, Mandy & Dorsette, Tiara L. & Gheewala, Shabbir H., 2021. "Third generation of photovoltaic panels: A life cycle assessment," Renewable Energy, Elsevier, vol. 164(C), pages 556-565.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9190-:d:993048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.