An Ensemble Stochastic Forecasting Framework for Variable Distributed Demand Loads
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Jain, Rishee K. & Smith, Kevin M. & Culligan, Patricia J. & Taylor, John E., 2014. "Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy," Applied Energy, Elsevier, vol. 123(C), pages 168-178.
- Xenos, Dionysios P. & Mohd Noor, Izzati & Matloubi, Mitra & Cicciotti, Matteo & Haugen, Trond & Thornhill, Nina F., 2016. "Demand-side management and optimal operation of industrial electricity consumers: An example of an energy-intensive chemical plant," Applied Energy, Elsevier, vol. 182(C), pages 418-433.
- Spiliotis, Konstantinos & Ramos Gutierrez, Ariana Isabel & Belmans, Ronnie, 2016. "Demand flexibility versus physical network expansions in distribution grids," Applied Energy, Elsevier, vol. 182(C), pages 613-624.
- Wang, Chi-hsiang & Grozev, George & Seo, Seongwon, 2012. "Decomposition and statistical analysis for regional electricity demand forecasting," Energy, Elsevier, vol. 41(1), pages 313-325.
- Raza, Muhammad Qamar & Khosravi, Abbas, 2015. "A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1352-1372.
- Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2017. "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 341-363.
- Fan, Cheng & Xiao, Fu & Wang, Shengwei, 2014. "Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques," Applied Energy, Elsevier, vol. 127(C), pages 1-10.
- Deihimi, Ali & Orang, Omid & Showkati, Hemen, 2013. "Short-term electric load and temperature forecasting using wavelet echo state networks with neural reconstruction," Energy, Elsevier, vol. 57(C), pages 382-401.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jonas Bielskus & Violeta Motuzienė & Tatjana Vilutienė & Audrius Indriulionis, 2020. "Occupancy Prediction Using Differential Evolution Online Sequential Extreme Learning Machine Model," Energies, MDPI, vol. 13(15), pages 1-20, August.
- Daisuke Kodaira & Kazuki Tsukazaki & Taiki Kure & Junji Kondoh, 2021. "Improving Forecast Reliability for Geographically Distributed Photovoltaic Generations," Energies, MDPI, vol. 14(21), pages 1-15, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Yibo & Tan, Hongwei, 2017. "Short-term prediction of electric demand in building sector via hybrid support vector regression," Applied Energy, Elsevier, vol. 204(C), pages 1363-1374.
- Zhang, Liang & Wen, Jin & Li, Yanfei & Chen, Jianli & Ye, Yunyang & Fu, Yangyang & Livingood, William, 2021. "A review of machine learning in building load prediction," Applied Energy, Elsevier, vol. 285(C).
- Liu, Che & Sun, Bo & Zhang, Chenghui & Li, Fan, 2020. "A hybrid prediction model for residential electricity consumption using holt-winters and extreme learning machine," Applied Energy, Elsevier, vol. 275(C).
- Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
- Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.
- Yildiz, B. & Bilbao, J.I. & Dore, J. & Sproul, A.B., 2017. "Recent advances in the analysis of residential electricity consumption and applications of smart meter data," Applied Energy, Elsevier, vol. 208(C), pages 402-427.
- Li, Guannan & Wu, Yubei & Yoon, Sungmin & Fang, Xi, 2024. "Comprehensive transferability assessment of short-term cross-building-energy prediction using deep adversarial network transfer learning," Energy, Elsevier, vol. 299(C).
- Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
- Nam, KiJeon & Hwangbo, Soonho & Yoo, ChangKyoo, 2020. "A deep learning-based forecasting model for renewable energy scenarios to guide sustainable energy policy: A case study of Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
- Joanna Henzel & Łukasz Wróbel & Marcin Fice & Marek Sikora, 2022. "Energy Consumption Forecasting for the Digital-Twin Model of the Building," Energies, MDPI, vol. 15(12), pages 1-21, June.
- Hsu, David, 2015. "Identifying key variables and interactions in statistical models of building energy consumption using regularization," Energy, Elsevier, vol. 83(C), pages 144-155.
- Tomasz Szul & Sylwester Tabor & Krzysztof Pancerz, 2021. "Application of the BORUTA Algorithm to Input Data Selection for a Model Based on Rough Set Theory (RST) to Prediction Energy Consumption for Building Heating," Energies, MDPI, vol. 14(10), pages 1-13, May.
- Guo, Yabin & Wang, Jiangyu & Chen, Huanxin & Li, Guannan & Liu, Jiangyan & Xu, Chengliang & Huang, Ronggeng & Huang, Yao, 2018. "Machine learning-based thermal response time ahead energy demand prediction for building heating systems," Applied Energy, Elsevier, vol. 221(C), pages 16-27.
- Xiao, Liye & Shao, Wei & Wang, Chen & Zhang, Kequan & Lu, Haiyan, 2016. "Research and application of a hybrid model based on multi-objective optimization for electrical load forecasting," Applied Energy, Elsevier, vol. 180(C), pages 213-233.
- Sunil Kumar Mohapatra & Sushruta Mishra & Hrudaya Kumar Tripathy & Akash Kumar Bhoi & Paolo Barsocchi, 2021. "A Pragmatic Investigation of Energy Consumption and Utilization Models in the Urban Sector Using Predictive Intelligence Approaches," Energies, MDPI, vol. 14(13), pages 1-28, June.
- Venkatraj, V. & Dixit, M.K., 2022. "Challenges in implementing data-driven approaches for building life cycle energy assessment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
- Wang, Zeyu & Srinivasan, Ravi S., 2017. "A review of artificial intelligence based building energy use prediction: Contrasting the capabilities of single and ensemble prediction models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 796-808.
- Zihao Li & Daniel Friedrich & Gareth P. Harrison, 2020. "Demand Forecasting for a Mixed-Use Building Using Agent-Schedule Information with a Data-Driven Model," Energies, MDPI, vol. 13(4), pages 1-20, February.
- Raza, Muhammad Qamar & Nadarajah, Mithulananthan & Ekanayake, Chandima, 2017. "Demand forecast of PV integrated bioclimatic buildings using ensemble framework," Applied Energy, Elsevier, vol. 208(C), pages 1626-1638.
- Vaghefi, A. & Jafari, M.A. & Bisse, Emmanuel & Lu, Y. & Brouwer, J., 2014. "Modeling and forecasting of cooling and electricity load demand," Applied Energy, Elsevier, vol. 136(C), pages 186-196.
More about this item
Keywords
Bayesian; deep neural network; demand load forecast; distributed load; ensemble algorithm stochastic; K-means;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2658-:d:362784. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.