IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i3p433-d201871.html
   My bibliography  Save this article

Development of a Consecutive Occupancy Estimation Framework for Improving the Energy Demand Prediction Performance of Building Energy Modeling Tools

Author

Listed:
  • Seokho Kim

    (Department of Architectural Engineering of Chungbuk National University, Cheongju, Chungbuk 28644, Korea)

  • Yujin Song

    (Korea Institute of Energy Research, Daejeon 34101, Korea)

  • Yoondong Sung

    (Korea Institute of Energy Research, Daejeon 34101, Korea)

  • Donghyun Seo

    (Department of Architectural Engineering of Chungbuk National University, Cheongju, Chungbuk 28644, Korea)

Abstract

To improve the energy prediction performance of a building energy model, the occupancy status information is very important. This is more important in real buildings, rather than under construction buildings, because actual building occupancy can significantly influence its energy consumption. In this study, a machine learning based framework for a consecutive occupancy estimation is proposed by utilizing internet of things data, such as indoor temperature and luminance, CO 2 density, electricity consumption of lighting, HVAC (heating, ventilation, and air conditioning), electric appliances, etc. Three machine learning based occupancy estimation algorithms (decision tree, support vector machine, artificial neural networks) are selected and evaluated in terms of the performance of estimating the occupancy status for each season. The selection process of the input variables that have crucial impact on the algorithms’ performance are described in detail. Finally, an occupancy estimation framework that can repeat model training and estimation consecutively in a situation when time-series data are continuously provided over the entire measurement period is suggested. In addition, the performance of the framework is evaluated to identify how it improves the energy prediction performance of the building energy model compared to conventional energy modeling practices. The suggested framework is distinguished from similar previous studies in two ways: (1) The proposed framework reveals that input variables for the occupancy estimation model can be occasionally changed by an occupant response to certain times and seasons, and (2) the framework incorporates time-series indirect occupancy sensing data and classification algorithms to consecutively provide occupancy information for the energy modeling effort.

Suggested Citation

  • Seokho Kim & Yujin Song & Yoondong Sung & Donghyun Seo, 2019. "Development of a Consecutive Occupancy Estimation Framework for Improving the Energy Demand Prediction Performance of Building Energy Modeling Tools," Energies, MDPI, vol. 12(3), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:433-:d:201871
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/3/433/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/3/433/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Antonio Paone & Jean-Philippe Bacher, 2018. "The Impact of Building Occupant Behavior on Energy Efficiency and Methods to Influence It: A Review of the State of the Art," Energies, MDPI, vol. 11(4), pages 1-19, April.
    2. Delzendeh, Elham & Wu, Song & Lee, Angela & Zhou, Ying, 2017. "The impact of occupants’ behaviours on building energy analysis: A research review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1061-1071.
    3. Goyal, Siddharth & Ingley, Herbert A. & Barooah, Prabir, 2013. "Occupancy-based zone-climate control for energy-efficient buildings: Complexity vs. performance," Applied Energy, Elsevier, vol. 106(C), pages 209-221.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Yuqing & Cheng, Xiaoyuan & Wang, Suhang & Chen, Jianli & Zhao, Tianxiang & Dai, Enyan, 2022. "Times series forecasting for urban building energy consumption based on graph convolutional network," Applied Energy, Elsevier, vol. 307(C).
    2. Mehreen Saleem Gul & Elmira NezamiFar, 2020. "Investigating the Interrelationships among Occupant Attitude, Knowledge and Behaviour in LEED-Certified Buildings Using Structural Equation Modelling," Energies, MDPI, vol. 13(12), pages 1-26, June.
    3. Hamza Mubarak & Mohammad J. Sanjari & Sascha Stegen & Abdallah Abdellatif, 2023. "Improved Active and Reactive Energy Forecasting Using a Stacking Ensemble Approach: Steel Industry Case Study," Energies, MDPI, vol. 16(21), pages 1-32, October.
    4. Mohammad K. Najjar & Eduardo Linhares Qualharini & Ahmed W. A. Hammad & Dieter Boer & Assed Haddad, 2019. "Framework for a Systematic Parametric Analysis to Maximize Energy Output of PV Modules Using an Experimental Design," Sustainability, MDPI, vol. 11(10), pages 1-24, May.
    5. Dana-Mihaela Petroșanu & George Căruțașu & Nicoleta Luminița Căruțașu & Alexandru Pîrjan, 2019. "A Review of the Recent Developments in Integrating Machine Learning Models with Sensor Devices in the Smart Buildings Sector with a View to Attaining Enhanced Sensing, Energy Efficiency, and Optimal B," Energies, MDPI, vol. 12(24), pages 1-64, December.
    6. Qadeer Ali & Muhammad Jamaluddin Thaheem & Fahim Ullah & Samad M. E. Sepasgozar, 2020. "The Performance Gap in Energy-Efficient Office Buildings: How the Occupants Can Help?," Energies, MDPI, vol. 13(6), pages 1-27, March.
    7. Mohammad K. Najjar & Vivian W. Y. Tam & Leandro Torres Di Gregorio & Ana Catarina Jorge Evangelista & Ahmed W. A. Hammad & Assed Haddad, 2019. "Integrating Parametric Analysis with Building Information Modeling to Improve Energy Performance of Construction Projects," Energies, MDPI, vol. 12(8), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonas Bielskus & Violeta Motuzienė & Tatjana Vilutienė & Audrius Indriulionis, 2020. "Occupancy Prediction Using Differential Evolution Online Sequential Extreme Learning Machine Model," Energies, MDPI, vol. 13(15), pages 1-20, August.
    2. Li, Xinyi & Yao, Runming, 2020. "A machine-learning-based approach to predict residential annual space heating and cooling loads considering occupant behaviour," Energy, Elsevier, vol. 212(C).
    3. Paulína Šujanová & Monika Rychtáriková & Tiago Sotto Mayor & Affan Hyder, 2019. "A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review," Energies, MDPI, vol. 12(8), pages 1-37, April.
    4. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    5. Juana Isabel Méndez & Adán Medina & Pedro Ponce & Therese Peffer & Alan Meier & Arturo Molina, 2022. "Evolving Gamified Smart Communities in Mexico to Save Energy in Communities through Intelligent Interfaces," Energies, MDPI, vol. 15(15), pages 1-29, July.
    6. Marta Gangolells & Miquel Casals & Núria Forcada & Marcel Macarulla, 2020. "Life Cycle Analysis of a Game-Based Solution for Domestic Energy Saving," Sustainability, MDPI, vol. 12(17), pages 1-18, August.
    7. Cui, Can & Zhang, Xin & Cai, Wenjian, 2020. "An energy-saving oriented air balancing method for demand controlled ventilation systems with branch and black-box model," Applied Energy, Elsevier, vol. 264(C).
    8. Jakob Carlander & Bahram Moshfegh & Jan Akander & Fredrik Karlsson, 2020. "Effects on Energy Demand in an Office Building Considering Location, Orientation, Façade Design and Internal Heat Gains—A Parametric Study," Energies, MDPI, vol. 13(23), pages 1-22, November.
    9. Anna Mutule & Marcos Domingues & Fernando Ulloa-Vásquez & Dante Carrizo & Luis García-Santander & Ana-Maria Dumitrescu & Diego Issicaba & Lucas Melo, 2021. "Implementing Smart City Technologies to Inspire Change in Consumer Energy Behaviour," Energies, MDPI, vol. 14(14), pages 1-15, July.
    10. Papineau, Maya & Yassin, Kareman & Newsham, Guy & Brice, Sarah, 2021. "Conditional demand analysis as a tool to evaluate energy policy options on the path to grid decarbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    11. Kiguchi, Y. & Weeks, M. & Arakawa, R., 2021. "Predicting winners and losers under time-of-use tariffs using smart meter data," Energy, Elsevier, vol. 236(C).
    12. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
    13. Korkas, Christos D. & Baldi, Simone & Michailidis, Iakovos & Kosmatopoulos, Elias B., 2015. "Intelligent energy and thermal comfort management in grid-connected microgrids with heterogeneous occupancy schedule," Applied Energy, Elsevier, vol. 149(C), pages 194-203.
    14. Shu Su & Xiaodong Li & Borong Lin & Hongyang Li & Jingfeng Yuan, 2019. "A Comparison of the Environmental Performance of Cooling and Heating among Different Household Types in China’s Hot Summer–Cold Winter Zone," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
    15. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
    16. Isabel Andrade & Johann Land & Patricio Gallardo & Susan Krumdieck, 2022. "Application of the InTIME Methodology for the Transition of Office Buildings to Low Carbon—A Case Study," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
    17. Antonio Paone & Jean-Philippe Bacher, 2018. "The Impact of Building Occupant Behavior on Energy Efficiency and Methods to Influence It: A Review of the State of the Art," Energies, MDPI, vol. 11(4), pages 1-19, April.
    18. Anh Tuan Phan & Thi Tuyet Hong Vu & Dinh Quang Nguyen & Eleonora Riva Sanseverino & Hang Thi-Thuy Le & Van Cong Bui, 2022. "Data Compensation with Gaussian Processes Regression: Application in Smart Building’s Sensor Network," Energies, MDPI, vol. 15(23), pages 1-16, December.
    19. Martin Eriksson & Jan Akander & Bahram Moshfegh, 2022. "Investigating Energy Use in a City District in Nordic Climate Using Energy Signature," Energies, MDPI, vol. 15(5), pages 1-22, March.
    20. Tien, Paige Wenbin & Wei, Shuangyu & Calautit, John Kaiser & Darkwa, Jo & Wood, Christopher, 2022. "Real-time monitoring of occupancy activities and window opening within buildings using an integrated deep learning-based approach for reducing energy demand," Applied Energy, Elsevier, vol. 308(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:433-:d:201871. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.