IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i15p3997-d393919.html
   My bibliography  Save this article

Contribution of Driving Efficiency and Vehicle-to-Grid to Eco-Design

Author

Listed:
  • David Borge-Diez

    (Department of Electrical and Control Engineering, Universidad de León, 24007 León, Spain)

  • Pedro Miguel Ortega-Cabezas

    (Department of Electric, Electronic and Control Engineering, UNED, 28040 Madrid, Spain)

  • Antonio Colmenar-Santos

    (Department of Electric, Electronic and Control Engineering, UNED, 28040 Madrid, Spain)

  • Jorge-Juan Blanes-Peiró

    (Department of Electrical and Control Engineering, Universidad de León, 24007 León, Spain)

Abstract

Designing eco-friendly products involves energy efficiency improvements. Eco-friendly products must consider not only raw materials and manufacturing processes to improve energy efficiency but also energy needed when designing them. This research shows how eco-routing (ER), eco-charging (EC), eco-driving (EDR), vehicle-to-grid (V2G) and electric vehicles (EVs) can contribute to the reduction of energy consumption during product design. To do this, a group of 44 engineers assigned to the project was chosen to assess the total energy available for V2G when driving EVs from their homes to the design center by using ER, ED and EC by running an application coded by the authors. The energy stored in EVs was used to quantify the reduction in energy consumption of the buildings present in the design center. The results show that the energy saving ranges from 2.89% to 6.9% per day—in other words, 93 kWh per day during the design process. In addition, the fact of making the design process greener implies that renewable energies (REs) are integrated better during the design process. By running the application, drivers are informed about the RE mix when the charging process takes place. Finally, this research shows that current policies make V2G and vehicle-to-home techniques not compatible.

Suggested Citation

  • David Borge-Diez & Pedro Miguel Ortega-Cabezas & Antonio Colmenar-Santos & Jorge-Juan Blanes-Peiró, 2020. "Contribution of Driving Efficiency and Vehicle-to-Grid to Eco-Design," Energies, MDPI, vol. 13(15), pages 1-29, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3997-:d:393919
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/15/3997/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/15/3997/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seow, Yingying & Goffin, Nicholas & Rahimifard, Shahin & Woolley, Elliot, 2016. "A ‘Design for Energy Minimization’ approach to reduce energy consumption during the manufacturing phase," Energy, Elsevier, vol. 109(C), pages 894-905.
    2. Zhao, Yang & Noori, Mehdi & Tatari, Omer, 2016. "Vehicle to Grid regulation services of electric delivery trucks: Economic and environmental benefit analysis," Applied Energy, Elsevier, vol. 170(C), pages 161-175.
    3. Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo & Sovacool, Benjamin K., 2018. "Promoting Vehicle to Grid (V2G) in the Nordic region: Expert advice on policy mechanisms for accelerated diffusion," Energy Policy, Elsevier, vol. 116(C), pages 422-432.
    4. Tarroja, Brian & Zhang, Li & Wifvat, Van & Shaffer, Brendan & Samuelsen, Scott, 2016. "Assessing the stationary energy storage equivalency of vehicle-to-grid charging battery electric vehicles," Energy, Elsevier, vol. 106(C), pages 673-690.
    5. Cedric De Cauwer & Joeri Van Mierlo & Thierry Coosemans, 2015. "Energy Consumption Prediction for Electric Vehicles Based on Real-World Data," Energies, MDPI, vol. 8(8), pages 1-21, August.
    6. Marc A. Rosen & Hossam A. Kishawy, 2012. "Sustainable Manufacturing and Design: Concepts, Practices and Needs," Sustainability, MDPI, vol. 4(2), pages 1-21, January.
    7. Luis Gonzaga Baca Ruiz & Manuel Pegalajar Cuéllar & Miguel Delgado Calvo-Flores & María Del Carmen Pegalajar Jiménez, 2016. "An Application of Non-Linear Autoregressive Neural Networks to Predict Energy Consumption in Public Buildings," Energies, MDPI, vol. 9(9), pages 1-21, August.
    8. Uddin, Kotub & Dubarry, Matthieu & Glick, Mark B., 2018. "The viability of vehicle-to-grid operations from a battery technology and policy perspective," Energy Policy, Elsevier, vol. 113(C), pages 342-347.
    9. Bui, Dac-Khuong & Nguyen, Tuan Ngoc & Ghazlan, Abdallah & Ngo, Ngoc-Tri & Ngo, Tuan Duc, 2020. "Enhancing building energy efficiency by adaptive façade: A computational optimization approach," Applied Energy, Elsevier, vol. 265(C).
    10. Moon, Karen Ka-Leung & Youn, Chorong & Chang, Jimmy M.T. & Yeung, Alex Wai-hon, 2013. "Product design scenarios for energy saving: A case study of fashion apparel," International Journal of Production Economics, Elsevier, vol. 146(2), pages 392-401.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ortega-Cabezas, Pedro-Miguel & Colmenar-Santos, Antonio & Borge-Diez, David & Blanes-Peiró, Jorge-Juan, 2021. "Can eco-routing, eco-driving and eco-charging contribute to the European Green Deal? Case Study: The City of Alcalá de Henares (Madrid, Spain)," Energy, Elsevier, vol. 228(C).
    2. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo, 2020. "Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    3. Gonzalez Venegas, Felipe & Petit, Marc & Perez, Yannick, 2021. "Active integration of electric vehicles into distribution grids: Barriers and frameworks for flexibility services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Thompson, Andrew W. & Perez, Yannick, 2020. "Vehicle-to-Everything (V2X) energy services, value streams, and regulatory policy implications," Energy Policy, Elsevier, vol. 137(C).
    5. Philipp Andreas Gunkel & Claire Bergaentzl'e & Ida Gr{ae}sted Jensen & Fabian Scheller, 2020. "From passive to active: Flexibility from electric vehicles in the context of transmission system development," Papers 2011.05830, arXiv.org.
    6. Greaker, Mads & Hagem, Cathrine & Proost, Stef, 2022. "An economic model of vehicle-to-grid: Impacts on the electricity market and consumer cost of electric vehicles," Resource and Energy Economics, Elsevier, vol. 69(C).
    7. Gunkel, Philipp Andreas & Bergaentzlé, Claire & Græsted Jensen, Ida & Scheller, Fabian, 2020. "From passive to active: Flexibility from electric vehicles in the context of transmission system development," Applied Energy, Elsevier, vol. 277(C).
    8. Nnaemeka Vincent Emodi & Scott Dwyer & Kriti Nagrath & John Alabi, 2022. "Electromobility in Australia: Tariff Design Structure and Consumer Preferences for Mobile Distributed Energy Storage," Sustainability, MDPI, vol. 14(11), pages 1-18, May.
    9. Gschwendtner, Christine & Sinsel, Simon R. & Stephan, Annegret, 2021. "Vehicle-to-X (V2X) implementation: An overview of predominate trial configurations and technical, social and regulatory challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    10. Tepe, Benedikt & Figgener, Jan & Englberger, Stefan & Sauer, Dirk Uwe & Jossen, Andreas & Hesse, Holger, 2022. "Optimal pool composition of commercial electric vehicles in V2G fleet operation of various electricity markets," Applied Energy, Elsevier, vol. 308(C).
    11. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    12. Zhang, XiaoLi & Liu, ChenGuang & Li, WenJuan & Evans, Steve & Yin, Yong, 2017. "Effects of key enabling technologies for seru production on sustainable performance," Omega, Elsevier, vol. 66(PB), pages 290-307.
    13. Alexandru Pîrjan & Simona-Vasilica Oprea & George Căruțașu & Dana-Mihaela Petroșanu & Adela Bâra & Cristina Coculescu, 2017. "Devising Hourly Forecasting Solutions Regarding Electricity Consumption in the Case of Commercial Center Type Consumers," Energies, MDPI, vol. 10(11), pages 1-36, October.
    14. Jungmin An & Dong-Kwan Kim & Jinyeong Lee & Sung-Kwan Joo, 2021. "Least Squares Monte Carlo Simulation-Based Decision-Making Method for Photovoltaic Investment in Korea," Sustainability, MDPI, vol. 13(19), pages 1-14, September.
    15. Géremi Gilson Dranka & Paula Ferreira, 2020. "Electric Vehicles and Biofuels Synergies in the Brazilian Energy System," Energies, MDPI, vol. 13(17), pages 1-22, August.
    16. Xilin Zhang & Yuejin Tan & Zhiwei Yang, 2018. "Rework Quantification and Influence of Rework on Duration and Cost of Equipment Development Task," Sustainability, MDPI, vol. 10(10), pages 1-16, October.
    17. Katsaprakakis, Dimitris Al & Voumvoulakis, Manolis, 2018. "A hybrid power plant towards 100% energy autonomy for the island of Sifnos, Greece. Perspectives created from energy cooperatives," Energy, Elsevier, vol. 161(C), pages 680-698.
    18. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    19. Nagel, Niels Oliver & Jåstad, Eirik Ogner & Martinsen, Thomas, 2024. "The grid benefits of vehicle-to-grid in Norway and Denmark: An analysis of home- and public parking potentials," Energy, Elsevier, vol. 293(C).
    20. Luo, Lizi & Wu, Zhi & Gu, Wei & Huang, He & Gao, Song & Han, Jun, 2020. "Coordinated allocation of distributed generation resources and electric vehicle charging stations in distribution systems with vehicle-to-grid interaction," Energy, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3997-:d:393919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.