IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i15p3769-d388142.html
   My bibliography  Save this article

Modeling of Electric Energy Consumption during Dairy Wastewater Treatment Plant Operation

Author

Listed:
  • Radosław Żyłka

    (Bielmlek Cooperative, 52 Wojska Polskiego St., 17-100 Bielsk Podlaski, Poland)

  • Wojciech Dąbrowski

    (Faculty of Civil Engineering and Environmental Science, Bialystok University of Technology, 45E Wiejska St., 15-351 Bialystok, Poland)

  • Paweł Malinowski

    (Department of Statistics and Medical Informatics, Medical University of Bialystok, 37 Szpitalna St., 15-295 Bialystok, Poland)

  • Beata Karolinczak

    (Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, 20 Nowowiejska St., 00-653 Warsaw, Poland)

Abstract

The intensification of biological wastewater treatment requires the high usage of electric energy, mainly for aeration processes. Publications on energy consumption have been mostly related to municipal wastewater treatment plants (WWTPs). The aim of the research was to elaborate on models for the estimation of energy consumption during dairy WWTP operation. These models can be used for the optimization of electric energy consumption. The research was conducted in a dairy WWTP, operating with dissolved air flotation (DAF) and an activated sludge system. Energy consumption was measured with the help of three-phase network parameter transducers and a supervisory control and data acquisition (SCADA) system. The obtained models provided accurate predictions of DAF, biological treatment, and the overall WWTP energy consumption using chemical oxygen demand (COD), sewage flow, and air temperature. Using the energy consumption of the biological treatment as an independent variable, as well as air temperature, it is possible to estimate the variability of the total electric energy consumption. During the summer period, an increase in the organic load (expressed as COD) discharged into the biological treatment causes higher electric energy consumption in the whole dairy WWTP. Hence, it is recommended to increase the efficiency of the removal of organic pollutants in the DAF process. An application for the estimation of energy consumption was created.

Suggested Citation

  • Radosław Żyłka & Wojciech Dąbrowski & Paweł Malinowski & Beata Karolinczak, 2020. "Modeling of Electric Energy Consumption during Dairy Wastewater Treatment Plant Operation," Energies, MDPI, vol. 13(15), pages 1-14, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3769-:d:388142
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/15/3769/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/15/3769/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Longo, Stefano & d’Antoni, Benedetto Mirko & Bongards, Michael & Chaparro, Antonio & Cronrath, Andreas & Fatone, Francesco & Lema, Juan M. & Mauricio-Iglesias, Miguel & Soares, Ana & Hospido, Almudena, 2016. "Monitoring and diagnosis of energy consumption in wastewater treatment plants. A state of the art and proposals for improvement," Applied Energy, Elsevier, vol. 179(C), pages 1251-1268.
    2. Marcin Dębowski & Marcin Zieliński & Marta Kisielewska & Joanna Kazimierowicz, 2020. "Evaluation of Anaerobic Digestion of Dairy Wastewater in an Innovative Multi-Section Horizontal Flow Reactor," Energies, MDPI, vol. 13(9), pages 1-16, May.
    3. Venkatesh, G. & Brattebø, Helge, 2011. "Energy consumption, costs and environmental impacts for urban water cycle services: Case study of Oslo (Norway)," Energy, Elsevier, vol. 36(2), pages 792-800.
    4. Koenker, Roger & Park, Beum J., 1996. "An interior point algorithm for nonlinear quantile regression," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 265-283.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcin Dębowski & Marcin Zieliński, 2022. "Wastewater Treatment and Biogas Production: Innovative Technologies, Research and Development Directions," Energies, MDPI, vol. 15(6), pages 1-4, March.
    2. Chenxi Pang & Xi Luo & Bing Rong & Xuebiao Nie & Zhengyu Jin & Xue Xia, 2022. "Carbon Emission Accounting and the Carbon Neutralization Model for a Typical Wastewater Treatment Plant in China," IJERPH, MDPI, vol. 20(1), pages 1-15, December.
    3. Joanna Rodziewicz & Artur Mielcarek & Kamil Bryszewski & Wojciech Janczukowicz & Karolina Kłobukowska, 2022. "Energy Consumption for Nutrient Removal from High-Nitrate and High-Phosphorus Wastewater in Aerobic and Anaerobic Bioelectrochemical Reactors," Energies, MDPI, vol. 15(19), pages 1-15, October.
    4. Joanna Kazimierowicz & Izabela Bartkowska & Maria Walery, 2020. "Effect of Low-Temperature Conditioning of Excess Dairy Sewage Sludge with the Use of Solidified Carbon Dioxide on the Efficiency of Methane Fermentation," Energies, MDPI, vol. 14(1), pages 1-13, December.
    5. Katarzyna Ignatowicz & Jacek Piekarski & Paweł Kogut, 2021. "Influence of Selected Substrate Dosage on the Process of Biogas Installation Start-Up in Real Conditions," Energies, MDPI, vol. 14(18), pages 1-11, September.
    6. Katarzyna Ignatowicz & Gabriel Filipczak & Barbara Dybek & Grzegorz Wałowski, 2023. "Biogas Production Depending on the Substrate Used: A Review and Evaluation Study—European Examples," Energies, MDPI, vol. 16(2), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paulami De & Mrinmoy Majumder, 2020. "Allocation of energy in surface water treatment plants for maximum energy conservation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 3347-3370, April.
    2. Beata Karolinczak & Wojciech Dąbrowski & Radosław Żyłka, 2021. "Evaluation of Dairy Wastewater Treatment Systems Using Carbon Footprint Analysis," Energies, MDPI, vol. 14(17), pages 1-10, August.
    3. Tian, Maoxi & El Khoury, Rim & Alshater, Muneer M., 2023. "The nonlinear and negative tail dependence and risk spillovers between foreign exchange and stock markets in emerging economies," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 82(C).
    4. Ma, Lingjie & Koenker, Roger, 2006. "Quantile regression methods for recursive structural equation models," Journal of Econometrics, Elsevier, vol. 134(2), pages 471-506, October.
    5. Andrea G. Capodaglio & Gustaf Olsson, 2019. "Energy Issues in Sustainable Urban Wastewater Management: Use, Demand Reduction and Recovery in the Urban Water Cycle," Sustainability, MDPI, vol. 12(1), pages 1-17, December.
    6. Komunjer, Ivana, 2005. "Quasi-maximum likelihood estimation for conditional quantiles," Journal of Econometrics, Elsevier, vol. 128(1), pages 137-164, September.
    7. Moshe Buchinsky, 1998. "Recent Advances in Quantile Regression Models: A Practical Guideline for Empirical Research," Journal of Human Resources, University of Wisconsin Press, vol. 33(1), pages 88-126.
    8. Andrés Sagner, 2020. "Measuring Systemic Risk: A Quantile Factor Analysis," Working Papers Central Bank of Chile 874, Central Bank of Chile.
    9. Maktabifard, Mojtaba & Al-Hazmi, Hussein E. & Szulc, Paulina & Mousavizadegan, Mohammad & Xu, Xianbao & Zaborowska, Ewa & Li, Xiang & Mąkinia, Jacek, 2023. "Net-zero carbon condition in wastewater treatment plants: A systematic review of mitigation strategies and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    10. Habshah Midi, 1999. "Preliminary estimators for robust non-linear regression estimation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(5), pages 591-600.
    11. Nogueira Vilanova, Mateus Ricardo & Perrella Balestieri, José Antônio, 2014. "Energy and hydraulic efficiency in conventional water supply systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 701-714.
    12. Bouri, Elie & Kamal, Elham & Kinateder, Harald, 2023. "FTX Collapse and systemic risk spillovers from FTX Token to major cryptocurrencies," Finance Research Letters, Elsevier, vol. 56(C).
    13. Geng, ZhiQiang & Dong, JunGen & Han, YongMing & Zhu, QunXiong, 2017. "Energy and environment efficiency analysis based on an improved environment DEA cross-model: Case study of complex chemical processes," Applied Energy, Elsevier, vol. 205(C), pages 465-476.
    14. Thanasis Stengos & Dianqin Wang, 2007. "An algorithm for censored quantile regressions," Economics Bulletin, AccessEcon, vol. 3(1), pages 1-9.
    15. Adam Masłoń & Joanna Czarnota & Paulina Szczyrba & Aleksandra Szaja & Joanna Szulżyk-Cieplak & Grzegorz Łagód, 2024. "Assessment of Energy Self-Sufficiency of Wastewater Treatment Plants—A Case Study from Poland," Energies, MDPI, vol. 17(5), pages 1-19, March.
    16. Dong Jin Lee, 2009. "Testing Parameter Stability in Quantile Models: An Application to the U.S. Inflation Process," Working papers 2009-26, University of Connecticut, Department of Economics.
    17. Capelo, Bernardo & Pérez-Sánchez, Modesto & Fernandes, João F.P. & Ramos, Helena M. & López-Jiménez, P. Amparo & Branco, P.J. Costa, 2017. "Electrical behaviour of the pump working as turbine in off grid operation," Applied Energy, Elsevier, vol. 208(C), pages 302-311.
    18. Norman Maswanganyi & Caston Sigauke & Edmore Ranganai, 2021. "Prediction of Extreme Conditional Quantiles of Electricity Demand: An Application Using South African Data," Energies, MDPI, vol. 14(20), pages 1-21, October.
    19. Zhou, Xiuqing & Wang, Jinde, 2005. "A genetic method of LAD estimation for models with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 48(3), pages 451-466, March.
    20. Anna Petit-Boix & David Sanjuan-Delmás & Carles Gasol & Gara Villalba & María Suárez-Ojeda & Xavier Gabarrell & Alejandro Josa & Joan Rieradevall, 2014. "Environmental Assessment of Sewer Construction in Small to Medium Sized Cities Using Life Cycle Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 979-997, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3769-:d:388142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.