IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v208y2017icp302-311.html
   My bibliography  Save this article

Electrical behaviour of the pump working as turbine in off grid operation

Author

Listed:
  • Capelo, Bernardo
  • Pérez-Sánchez, Modesto
  • Fernandes, João F.P.
  • Ramos, Helena M.
  • López-Jiménez, P. Amparo
  • Branco, P.J. Costa

Abstract

The use of pumps working as turbines (PATs) connected to the electric system, in the replacement of pressure reduction valves to reduce the excessive pressure in water distribution networks, have been studied for the last years. The introduction of PATs is very important in the water-energy nexus to promote the increase of the energy savings. As consequence, the majority of the water systems does not have access to the electrical grid and, therefore, the need to study the PATs operation off-grid is necessary. In this line, the novelty of this research is the application and optimization of a PAT in water systems when the recovery solution is off-grid type. To operate correctly, the induction machine requires an external source of reactive power, which is typically provided by the electrical grid. To supply the required reactive power, a bank of capacitors is installed at the machine terminals, so-called self-excited induction generator (SEIG). The analytical model, simulation and experimental works were performed, to analyse the SEIG behaviour. The results were applied in a SEIG-PAT system obtaining the global efficiency of the system for different speeds and loads. The global efficiency decreases 47% when off-grid operation, showing the need to optimize the electrical parameters of the generator to operate as off- grid with acceptable efficiency levels. In this framework, a tuning methodology for the SEIG capacitor bank values was developed to be automatically adjusted according to the operating point of the PAT to maximize its efficiency.

Suggested Citation

  • Capelo, Bernardo & Pérez-Sánchez, Modesto & Fernandes, João F.P. & Ramos, Helena M. & López-Jiménez, P. Amparo & Branco, P.J. Costa, 2017. "Electrical behaviour of the pump working as turbine in off grid operation," Applied Energy, Elsevier, vol. 208(C), pages 302-311.
  • Handle: RePEc:eee:appene:v:208:y:2017:i:c:p:302-311
    DOI: 10.1016/j.apenergy.2017.10.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917314526
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.10.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Balkhair, Khaled S. & Rahman, Khalil Ur, 2017. "Sustainable and economical small-scale and low-head hydropower generation: A promising alternative potential solution for energy generation at local and regional scale," Applied Energy, Elsevier, vol. 188(C), pages 378-391.
    2. Lima, Gustavo Meirelles & Luvizotto, Edevar & Brentan, Bruno M., 2017. "Selection and location of Pumps as Turbines substituting pressure reducing valves," Renewable Energy, Elsevier, vol. 109(C), pages 392-405.
    3. Irene Samora & Mário J. Franca & Anton J. Schleiss & Helena M. Ramos, 2016. "Simulated Annealing in Optimization of Energy Production in a Water Supply Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1533-1547, March.
    4. de Oliveira e Silva, Guilherme & Hendrick, Patrick, 2016. "Pumped hydro energy storage in buildings," Applied Energy, Elsevier, vol. 179(C), pages 1242-1250.
    5. Irene Samora & Mário Franca & Anton Schleiss & Helena Ramos, 2016. "Simulated Annealing in Optimization of Energy Production in a Water Supply Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1533-1547, March.
    6. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Adetokun, B.B., 2017. "Optimal capacitance selection for a wind-driven self-excited reluctance generator under varying wind speed and load conditions," Applied Energy, Elsevier, vol. 190(C), pages 339-353.
    7. Armando Carravetta & Giuseppe Del Giudice & Oreste Fecarotta & Helena M. Ramos, 2013. "PAT Design Strategy for Energy Recovery in Water Distribution Networks by Electrical Regulation," Energies, MDPI, vol. 6(1), pages 1-14, January.
    8. Longo, Stefano & d’Antoni, Benedetto Mirko & Bongards, Michael & Chaparro, Antonio & Cronrath, Andreas & Fatone, Francesco & Lema, Juan M. & Mauricio-Iglesias, Miguel & Soares, Ana & Hospido, Almudena, 2016. "Monitoring and diagnosis of energy consumption in wastewater treatment plants. A state of the art and proposals for improvement," Applied Energy, Elsevier, vol. 179(C), pages 1251-1268.
    9. Pearre, Nathaniel S. & Swan, Lukas G., 2015. "Technoeconomic feasibility of grid storage: Mapping electrical services and energy storage technologies," Applied Energy, Elsevier, vol. 137(C), pages 501-510.
    10. Armando Carravetta & Giuseppe Del Giudice & Oreste Fecarotta & Helena Ramos, 2012. "Energy Production in Water Distribution Networks: A PAT Design Strategy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3947-3959, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. João M. R. Catelas & João F. P. Fernandes & Modesto Pérez-Sánchez & P. Amparo López-Jiménez & Helena M. Ramos & P. J. Costa Branco, 2024. "Energy Efficiency and Stability of Micro-Hydropower PAT-SEIG Systems for DC Off-Grids," Energies, MDPI, vol. 17(6), pages 1-25, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco van Dijk & Stefanus Johannes van Vuuren & Giovanna Cavazzini & Chantel Monica Niebuhr & Alberto Santolin, 2022. "Optimizing Conduit Hydropower Potential by Determining Pareto-Optimal Trade-Off Curve," Sustainability, MDPI, vol. 14(13), pages 1-20, June.
    2. Hamlehdar, Maryam & Yousefi, Hossein & Noorollahi, Younes & Mohammadi, Mohammad, 2022. "Energy recovery from water distribution networks using micro hydropower: A case study in Iran," Energy, Elsevier, vol. 252(C).
    3. Davi Edson Sales Souza & André Luiz Amarante Mesquita & Claudio José Cavalcante Blanco, 2023. "Pressure Regulation in a Water Distribution Network Using Pumps as Turbines at Variable Speed for Energy Recovery," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1183-1206, February.
    4. Pérez-Sánchez, Modesto & Sánchez-Romero, Francisco Javier & López-Jiménez, P. Amparo & Ramos, Helena M., 2018. "PATs selection towards sustainability in irrigation networks: Simulated annealing as a water management tool," Renewable Energy, Elsevier, vol. 116(PA), pages 234-249.
    5. Boroomandnia, Arezoo & Rismanchi, Behzad & Wu, Wenyan, 2022. "A review of micro hydro systems in urban areas: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    6. Stefanizzi, Michele & Capurso, Tommaso & Balacco, Gabriella & Binetti, Mario & Camporeale, Sergio Mario & Torresi, Marco, 2020. "Selection, control and techno-economic feasibility of Pumps as Turbines in Water Distribution Networks," Renewable Energy, Elsevier, vol. 162(C), pages 1292-1306.
    7. Mercedes Garcia, Angel V. & Sánchez-Romero, Francisco Javier & López-Jiménez, P. Amparo & Pérez-Sánchez, Modesto, 2022. "A new optimization approach for the use of hybrid renewable systems in the search of the zero net energy consumption in water irrigation systems," Renewable Energy, Elsevier, vol. 195(C), pages 853-871.
    8. Thomas Pirard & Vasileios Kitsikoudis & Sebastien Erpicum & Michel Pirotton & Pierre Archambeau & Benjamin Dewals, 2022. "Discharge Redistribution as a Key Process for Heuristic Optimization of Energy Production with Pumps as Turbines in a Water Distribution Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1237-1250, March.
    9. Shojaeefard, Mohammad Hassan & Saremian, Salman, 2023. "Studying the impact of impeller geometrical parameters on the high-efficiency working range of pump as turbine (PAT) installed in the water distribution network," Renewable Energy, Elsevier, vol. 216(C).
    10. Venturini, Mauro & Manservigi, Lucrezia & Alvisi, Stefano & Simani, Silvio, 2018. "Development of a physics-based model to predict the performance of pumps as turbines," Applied Energy, Elsevier, vol. 231(C), pages 343-354.
    11. Maxime Binama & Kan Kan & Hui-Xiang Chen & Yuan Zheng & Da-Qing Zhou & Wen-Tao Su & Xin-Feng Ge & Janvier Ndayizigiye, 2021. "A Numerical Investigation into the PAT Hydrodynamic Response to Impeller Rotational Speed Variation," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
    12. Ruben Menke & Edo Abraham & Panos Parpas & Ivan Stoianov, 2016. "Exploring Optimal Pump Scheduling in Water Distribution Networks with Branch and Bound Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5333-5349, November.
    13. Carravetta, A. & Fecarotta, O. & Ramos, H.M., 2018. "A new low-cost installation scheme of PATs for pico-hydropower to recover energy in residential areas," Renewable Energy, Elsevier, vol. 125(C), pages 1003-1014.
    14. Kandi, Ali & Moghimi, Mahdi & Tahani, Mojtaba & Derakhshan, Shahram, 2021. "Optimization of pump selection for running as turbine and performance analysis within the regulation schemes," Energy, Elsevier, vol. 217(C).
    15. Jacopo Carlo Alberizzi & Massimiliano Renzi & Maurizio Righetti & Giuseppe Roberto Pisaturo & Mosè Rossi, 2019. "Speed and Pressure Controls of Pumps-as-Turbines Installed in Branch of Water-Distribution Network Subjected to Highly Variable Flow Rates," Energies, MDPI, vol. 12(24), pages 1-18, December.
    16. Sinagra, Marco & Aricò, Costanza & Tucciarelli, Tullio & Morreale, Gabriele, 2020. "Experimental and numerical analysis of a backpressure Banki inline turbine for pressure regulation and energy production," Renewable Energy, Elsevier, vol. 149(C), pages 980-986.
    17. Irene Samora & Mário Franca & Anton Schleiss & Helena Ramos, 2016. "Simulated Annealing in Optimization of Energy Production in a Water Supply Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1533-1547, March.
    18. Gideon Johannes Bonthuys & Marco van Dijk & Giovanna Cavazzini, 2021. "Optimizing the Potential Impact of Energy Recovery and Pipe Replacement on Leakage Reduction in a Medium Sized District Metered Area," Sustainability, MDPI, vol. 13(22), pages 1-23, November.
    19. Pei, Ji & Shen, Jiawei & Wang, Wenjie & Yuan, Shouqi & Zhao, Jiantao, 2024. "Evaluating hydraulic dissipation in a reversible mixed-flow pump for micro-pumped hydro storage based on entropy production theory," Renewable Energy, Elsevier, vol. 225(C).
    20. Morabito, Alessandro & Hendrick, Patrick, 2019. "Pump as turbine applied to micro energy storage and smart water grids: A case study," Applied Energy, Elsevier, vol. 241(C), pages 567-579.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:208:y:2017:i:c:p:302-311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.