IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2019i1p266-d302970.html
   My bibliography  Save this article

Energy Issues in Sustainable Urban Wastewater Management: Use, Demand Reduction and Recovery in the Urban Water Cycle

Author

Listed:
  • Andrea G. Capodaglio

    (Department of Civil Engineering and Architecture, University of Pavia, 27100 Pavia, Italy)

  • Gustaf Olsson

    (Department of Biomedical Engineering, Division of Industrial Electrical Engineering and Automation, Lund University, Box 117, 221 00 Lund, Sweden)

Abstract

Urban water systems and, in particular, wastewater treatment facilities are among the major energy consumers at municipal level worldwide. Estimates indicate that on average these facilities alone may require about 1% to 3% of the total electric energy output of a country, representing a significant fraction of municipal energy bills. Specific power consumption of state-of-the-art facilities should range between 20 and 45 kWh per population-equivalent served, per year, even though older plants may have even higher demands. This figure does not include wastewater conveyance (pumping) and residues post-processing. On the other hand, wastewater and its byproducts contain energy in different forms: chemical, thermal and potential. Until very recently, the only form of energy recovery from most facilities consisted of anaerobic post-digestion of process residuals (waste sludge), by which chemical energy methane is obtained as biogas, in amounts generally sufficient to cover about half of plant requirements. Implementation of new technologies may allow more efficient strategies of energy savings and recovery from sewage treatment. Besides wastewater valorization by exploitation of its chemical and thermal energy contents, closure of the wastewater cycle by recovery of the energy content of process residuals could allow significant additional energy recovery and increased greenhouse emissions abatement.

Suggested Citation

  • Andrea G. Capodaglio & Gustaf Olsson, 2019. "Energy Issues in Sustainable Urban Wastewater Management: Use, Demand Reduction and Recovery in the Urban Water Cycle," Sustainability, MDPI, vol. 12(1), pages 1-17, December.
  • Handle: RePEc:gam:jsusta:v:12:y:2019:i:1:p:266-:d:302970
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/1/266/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/1/266/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Koottatep, Thammarat & Fakkaew, Krailak & Tajai, Nutnicha & Pradeep, Sangeetha V. & Polprasert, Chongrak, 2016. "Sludge stabilization and energy recovery by hydrothermal carbonization process," Renewable Energy, Elsevier, vol. 99(C), pages 978-985.
    2. Lee, Mengshan & Keller, Arturo A. & Chiang, Pen-Chi & Den, Walter & Wang, Hongtao & Hou, Chia-Hung & Wu, Jiang & Wang, Xin & Yan, Jinyue, 2017. "Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks," Applied Energy, Elsevier, vol. 205(C), pages 589-601.
    3. Wang, Tengfei & Zhai, Yunbo & Zhu, Yun & Li, Caiting & Zeng, Guangming, 2018. "A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 223-247.
    4. Andrea G. Capodaglio & Arianna Callegari & Maria Virginia Lopez, 2016. "European Framework for the Diffusion of Biogas Uses: Emerging Technologies, Acceptance, Incentive Strategies, and Institutional-Regulatory Support," Sustainability, MDPI, vol. 8(4), pages 1-18, March.
    5. Longo, Stefano & d’Antoni, Benedetto Mirko & Bongards, Michael & Chaparro, Antonio & Cronrath, Andreas & Fatone, Francesco & Lema, Juan M. & Mauricio-Iglesias, Miguel & Soares, Ana & Hospido, Almudena, 2016. "Monitoring and diagnosis of energy consumption in wastewater treatment plants. A state of the art and proposals for improvement," Applied Energy, Elsevier, vol. 179(C), pages 1251-1268.
    6. M. Shafiqul Islam, 2017. "Comparative evaluation of vacuum sewer and gravity sewer systems," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(1), pages 37-53, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeremy Wright & Jeremy Lytle & Devon Santillo & Luzalen Marcos & Kristiina Valter Mai, 2021. "Addressing the Water–Energy–Food Nexus through Enhanced Green Roof Performance," Sustainability, MDPI, vol. 13(4), pages 1-13, February.
    2. Marcin Zieliński & Joanna Kazimierowicz & Marcin Dębowski, 2022. "Advantages and Limitations of Anaerobic Wastewater Treatment—Technological Basics, Development Directions, and Technological Innovations," Energies, MDPI, vol. 16(1), pages 1-39, December.
    3. Tamás Karches, 2022. "Fine-Tuning the Aeration Control for Energy-Efficient Operation in a Small Sewage Treatment Plant by Applying Biokinetic Modeling," Energies, MDPI, vol. 15(17), pages 1-13, August.
    4. Jose M. Vindel & Estrella Trincado & Antonio Sánchez-Bayón, 2021. "European Union Green Deal and the Opportunity Cost of Wastewater Treatment Projects," Energies, MDPI, vol. 14(7), pages 1-18, April.
    5. Vasileios A. Tzanakakis & Andrea G. Capodaglio & Andreas N. Angelakis, 2023. "Insights into Global Water Reuse Opportunities," Sustainability, MDPI, vol. 15(17), pages 1-30, August.
    6. Angineh Zohrabian & Kelly T. Sanders, 2020. "The Energy Trade-Offs of Transitioning to a Locally Sourced Water Supply Portfolio in the City of Los Angeles," Energies, MDPI, vol. 13(21), pages 1-19, October.
    7. Dawid Nosek & Piotr Jachimowicz & Agnieszka Cydzik-Kwiatkowska, 2020. "Anode Modification as an Alternative Approach to Improve Electricity Generation in Microbial Fuel Cells," Energies, MDPI, vol. 13(24), pages 1-22, December.
    8. Rosa M. Llácer-Iglesias & P. Amparo López-Jiménez & Modesto Pérez-Sánchez, 2021. "Energy Self-Sufficiency Aiming for Sustainable Wastewater Systems: Are All Options Being Explored?," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    9. Daniele Cecconet & Jakub Raček & Arianna Callegari & Petr Hlavínek, 2019. "Energy Recovery from Wastewater: A Study on Heating and Cooling of a Multipurpose Building with Sewage-Reclaimed Heat Energy," Sustainability, MDPI, vol. 12(1), pages 1-11, December.
    10. Farzin Golzar & David Nilsson & Viktoria Martin, 2020. "Forecasting Wastewater Temperature Based on Artificial Neural Network (ANN) Technique and Monte Carlo Sensitivity Analysis," Sustainability, MDPI, vol. 12(16), pages 1-17, August.
    11. Chien, Fengsheng & Sadiq, Muhammad & Li, Li & Sharif, Arshian, 2023. "The role of sustainable energy utility, natural resource utilization and waste management in reducing energy poverty: Evidence from South Asian countries," Utilities Policy, Elsevier, vol. 82(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Radini, Serena & Marinelli, Enrico & Akyol, Çağrı & Eusebi, Anna Laura & Vasilaki, Vasileia & Mancini, Adriano & Frontoni, Emanuele & Bischetti, Gian Battista & Gandolfi, Claudio & Katsou, Evina & Fat, 2021. "Urban water-energy-food-climate nexus in integrated wastewater and reuse systems: Cyber-physical framework and innovations," Applied Energy, Elsevier, vol. 298(C).
    2. Velasquez-Orta, Sharon B. & Heidrich, Oliver & Black, Ken & Graham, David, 2018. "Retrofitting options for wastewater networks to achieve climate change reduction targets," Applied Energy, Elsevier, vol. 218(C), pages 430-441.
    3. Li, Shuangjun & Yuan, Xiangzhou & Deng, Shuai & Zhao, Li & Lee, Ki Bong, 2021. "A review on biomass-derived CO2 adsorption capture: Adsorbent, adsorber, adsorption, and advice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    4. Czerwińska, Klaudia & Śliz, Maciej & Wilk, Małgorzata, 2022. "Hydrothermal carbonization process: Fundamentals, main parameter characteristics and possible applications including an effective method of SARS-CoV-2 mitigation in sewage sludge. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Micari, M. & Cipollina, A. & Tamburini, A. & Moser, M. & Bertsch, V. & Micale, G., 2019. "Combined membrane and thermal desalination processes for the treatment of ion exchange resins spent brine," Applied Energy, Elsevier, vol. 254(C).
    6. Huang, Runyao & Shen, Ziheng & Wang, Hongtao & Xu, Jin & Ai, Zisheng & Zheng, Hongyuan & Liu, Runxi, 2021. "Evaluating the energy efficiency of wastewater treatment plants in the Yangtze River Delta: Perspectives on regional discrepancies," Applied Energy, Elsevier, vol. 297(C).
    7. Yan, Guoxin & Kenway, Steven J. & Lam, Ka Leung & Lant, Paul A., 2024. "Water-energy trajectories for urban water and wastewater reveal the impact of city strategies," Applied Energy, Elsevier, vol. 366(C).
    8. Odabaş Baş, Gözde & Aydınalp Köksal, Merih, 2022. "Environmental and techno-economic analysis of the integration of biogas and solar power systems into urban wastewater treatment plants," Renewable Energy, Elsevier, vol. 196(C), pages 579-597.
    9. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    10. Tiago Teribele & Maria Elizabeth Gemaque Costa & Conceição de Maria Sales da Silva & Lia Martins Pereira & Lucas Pinto Bernar & Douglas Alberto Rocha de Castro & Fernanda Paula da Costa Assunção & Mar, 2023. "Hydrothermal Carbonization of Corn Stover: Structural Evolution of Hydro-Char and Degradation Kinetics," Energies, MDPI, vol. 16(7), pages 1-22, April.
    11. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    12. Maktabifard, Mojtaba & Al-Hazmi, Hussein E. & Szulc, Paulina & Mousavizadegan, Mohammad & Xu, Xianbao & Zaborowska, Ewa & Li, Xiang & Mąkinia, Jacek, 2023. "Net-zero carbon condition in wastewater treatment plants: A systematic review of mitigation strategies and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    13. Sooraj Kumar & Suhail Ahmed Soomro & Khanji Harijan & Mohammad Aslam Uqaili & Laveet Kumar, 2023. "Advancements of Biochar-Based Catalyst for Improved Production of Biodiesel: A Comprehensive Review," Energies, MDPI, vol. 16(2), pages 1-20, January.
    14. Śliz, Maciej & Wilk, Małgorzata, 2020. "A comprehensive investigation of hydrothermal carbonization: Energy potential of hydrochar derived from Virginia mallow," Renewable Energy, Elsevier, vol. 156(C), pages 942-950.
    15. Hatem Abushammala & Muhammad Adil Masood & Salma Taqi Ghulam & Jia Mao, 2023. "On the Conversion of Paper Waste and Rejects into High-Value Materials and Energy," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    16. Elena Tamburini & Mattias Gaglio & Giuseppe Castaldelli & Elisa Anna Fano, 2020. "Is Bioenergy Truly Sustainable When Land-Use-Change (LUC) Emissions Are Accounted for? The Case-Study of Biogas from Agricultural Biomass in Emilia-Romagna Region, Italy," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    17. Zhang, S.Q. & Li, Y.P. & Huang, G.H. & Ding, Y.K. & Yang, X., 2023. "Developing a copula-based input-output method for analyzing energy-water nexus of Tajikistan," Energy, Elsevier, vol. 266(C).
    18. Geng, ZhiQiang & Dong, JunGen & Han, YongMing & Zhu, QunXiong, 2017. "Energy and environment efficiency analysis based on an improved environment DEA cross-model: Case study of complex chemical processes," Applied Energy, Elsevier, vol. 205(C), pages 465-476.
    19. Pauline Macharia & Maria Wirth & Paul Yillia & Norbert Kreuzinger, 2021. "Examining the Relative Impact of Drivers on Energy Input for Municipal Water Supply in Africa," Sustainability, MDPI, vol. 13(15), pages 1-27, July.
    20. Ana Luiza Fontenelle & Erik Nilsson & Ieda Geriberto Hidalgo & Cintia B. Uvo & Drielli Peyerl, 2022. "Temporal Understanding of the Water–Energy Nexus: A Literature Review," Energies, MDPI, vol. 15(8), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2019:i:1:p:266-:d:302970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.