IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i5p1887-d1597662.html
   My bibliography  Save this article

Carbon Emission Reduction Strategies in Urban Water Sectors: A Case Study in Incheon Metropolitan City, South Korea

Author

Listed:
  • Gyumin Lee

    (Department of Civil Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Republic of Korea)

  • Hyunjung Kim

    (Department of Civil Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Republic of Korea)

  • Kyoungwon Min

    (Department of Civil Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Republic of Korea)

  • Taemun Hwang

    (Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-ro, Ilsanseo-gu, Goyang-si 10223, Republic of Korea)

  • Eunju Kim

    (Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-ro, Ilsanseo-gu, Goyang-si 10223, Republic of Korea)

  • Juwon Lee

    (Department of Chemical and Biochemical Engineering, College of Engineering, Western University Canada, 1151 Richmond Street, London, ON N6A 3K7, Canada)

  • Doosun Kang

    (Department of Civil Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Republic of Korea)

Abstract

Achieving carbon neutrality is a priority in global environmental policies, and South Korea is committed to its 2050 carbon neutrality goal. This study explores methods to reduce carbon emissions in urban water cycle (UWC) systems, which are essential urban infrastructures that consume considerable energy. Focusing on Incheon Metropolitan City (IMC), the research identifies UWC components, estimates energy consumption, and calculates carbon emissions across eight administrative districts. The analysis comprises four water abstraction plants (WAPs), four water treatment plants (WTPs), and eleven wastewater treatment plants (WWTPs). Strategies for carbon reduction involve decreasing water and energy consumption and minimizing emissions from wastewater treatment. This study categorizes management targets as water, energy, and carbon, developing different carbon emissions reduction scenarios. A carbon emission calculation model for WTPs and WWTPs was developed to evaluate energy consumption and carbon emissions across scenarios. Notably, the scenario focusing on renewable energy development and energy efficiency improvements yielded the highest carbon emissions reductions, confirming that the government’s renewable energy initiatives are vital for achieving net-zero emissions in IMC’s UWC systems. Conversely, the scenario prioritizing water use reduction proved less effective, but excelled regarding investment costs. These findings can serve as a model for other cities managing UWC systems while striving for sustainability.

Suggested Citation

  • Gyumin Lee & Hyunjung Kim & Kyoungwon Min & Taemun Hwang & Eunju Kim & Juwon Lee & Doosun Kang, 2025. "Carbon Emission Reduction Strategies in Urban Water Sectors: A Case Study in Incheon Metropolitan City, South Korea," Sustainability, MDPI, vol. 17(5), pages 1-23, February.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:1887-:d:1597662
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/5/1887/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/5/1887/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Venkatesh, G. & Brattebø, Helge, 2011. "Energy consumption, costs and environmental impacts for urban water cycle services: Case study of Oslo (Norway)," Energy, Elsevier, vol. 36(2), pages 792-800.
    2. Wang, Hongtao & Yang, Yi & Keller, Arturo A. & Li, Xiang & Feng, Shijin & Dong, Ya-nan & Li, Fengting, 2016. "Comparative analysis of energy intensity and carbon emissions in wastewater treatment in USA, Germany, China and South Africa," Applied Energy, Elsevier, vol. 184(C), pages 873-881.
    3. Kostner, Michael K. & Zanfei, Ariele & Alberizzi, Jacopo C. & Renzi, Massimiliano & Righetti, Maurizio & Menapace, Andrea, 2023. "Micro hydro power generation in water distribution networks through the optimal pumps-as-turbines sizing and control," Applied Energy, Elsevier, vol. 351(C).
    4. William R.L. Anderegg & Anna T. Trugman & Grayson Badgley & Christa M. Anderson & Ann M. Bartuska & Philippe Ciais & Danny Cullenward & Christopher B. Field & Jeremy Freeman & Scott J. Goetz & Jeffrey, 2020. "Climate-driven risks to the climate mitigation potential of forests," Post-Print hal-02883164, HAL.
    5. Zihan Gui & Heshuai Qi & Shiwu Wang, 2024. "Study on Carbon Emissions from an Urban Water System Based on a Life Cycle Assessment: A Case Study of a Typical Multi-Water County in China’s River Network Plain," Sustainability, MDPI, vol. 16(5), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paulami De & Mrinmoy Majumder, 2020. "Allocation of energy in surface water treatment plants for maximum energy conservation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 3347-3370, April.
    2. Lee, Mengshan & Keller, Arturo A. & Chiang, Pen-Chi & Den, Walter & Wang, Hongtao & Hou, Chia-Hung & Wu, Jiang & Wang, Xin & Yan, Jinyue, 2017. "Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks," Applied Energy, Elsevier, vol. 205(C), pages 589-601.
    3. Intae Shim & Eunju Kim & Sook-Hyun Nam & Jae-Wuk Koo & Juwon Lee & Jeongbeen Park & Homin Kye & Yonghyun Shin & Tae-Mun Hwang, 2025. "Assessing Greenhouse Gas Emissions in Urban Water Management: Scenarios Analysis for Mitigation," Sustainability, MDPI, vol. 17(5), pages 1-22, February.
    4. Renata Toczyłowska-Mamińska & Mariusz Ł. Mamiński, 2022. "Wastewater as a Renewable Energy Source—Utilisation of Microbial Fuel Cell Technology," Energies, MDPI, vol. 15(19), pages 1-14, September.
    5. Zhou, Yuzhou & Zhao, Jiexing & Zhai, Qiaozhu, 2021. "100% renewable energy: A multi-stage robust scheduling approach for cascade hydropower system with wind and photovoltaic power," Applied Energy, Elsevier, vol. 301(C).
    6. Maktabifard, Mojtaba & Al-Hazmi, Hussein E. & Szulc, Paulina & Mousavizadegan, Mohammad & Xu, Xianbao & Zaborowska, Ewa & Li, Xiang & Mąkinia, Jacek, 2023. "Net-zero carbon condition in wastewater treatment plants: A systematic review of mitigation strategies and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    7. Nogueira Vilanova, Mateus Ricardo & Perrella Balestieri, José Antônio, 2014. "Energy and hydraulic efficiency in conventional water supply systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 701-714.
    8. Adam Masłoń & Joanna Czarnota & Paulina Szczyrba & Aleksandra Szaja & Joanna Szulżyk-Cieplak & Grzegorz Łagód, 2024. "Assessment of Energy Self-Sufficiency of Wastewater Treatment Plants—A Case Study from Poland," Energies, MDPI, vol. 17(5), pages 1-19, March.
    9. Ihsan Hamawand & Anas Ghadouani & Jochen Bundschuh & Sara Hamawand & Raed A. Al Juboori & Sayan Chakrabarty & Talal Yusaf, 2017. "A Critical Review on Processes and Energy Profile of the Australian Meat Processing Industry," Energies, MDPI, vol. 10(5), pages 1-29, May.
    10. Anna Petit-Boix & David Sanjuan-Delmás & Carles Gasol & Gara Villalba & María Suárez-Ojeda & Xavier Gabarrell & Alejandro Josa & Joan Rieradevall, 2014. "Environmental Assessment of Sewer Construction in Small to Medium Sized Cities Using Life Cycle Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 979-997, March.
    11. González-Bravo, Ramón & Fuentes-Cortés, Luis Fabián & Ponce-Ortega, José María, 2017. "Defining priorities in the design of power and water distribution networks," Energy, Elsevier, vol. 137(C), pages 1026-1040.
    12. Zhao, Yuhuan & Shi, Qiaoling & li, Hao & Qian, Zhiling & Zheng, Lu & Wang, Song & He, Yizhang, 2022. "Simulating the economic and environmental effects of integrated policies in energy-carbon-water nexus of China," Energy, Elsevier, vol. 238(PA).
    13. Xinna Zhao & Li Guo & Zhiyuan Gao & Yu Hao, 2024. "Estimation and Analysis of Carbon Emission Efficiency in Chinese Industry and Its Influencing Factors—Evidence from the Micro Level," Energies, MDPI, vol. 17(4), pages 1-15, February.
    14. Stian Bruaset & Håkon Rygg & Sveinung Sægrov, 2018. "Reviewing the Long-Term Sustainability of Urban Water System Rehabilitation Strategies with an Alternative Approach," Sustainability, MDPI, vol. 10(6), pages 1-30, June.
    15. Chenxi Pang & Xi Luo & Bing Rong & Xuebiao Nie & Zhengyu Jin & Xue Xia, 2022. "Carbon Emission Accounting and the Carbon Neutralization Model for a Typical Wastewater Treatment Plant in China," IJERPH, MDPI, vol. 20(1), pages 1-15, December.
    16. Ana Belén Lozano Avilés & Francisco del Cerro Velázquez & Mercedes Llorens Pascual del Riquelme, 2019. "Methodology for Energy Optimization in Wastewater Treatment Plants. Phase I: Control of the Best Operating Conditions," Sustainability, MDPI, vol. 11(14), pages 1-27, July.
    17. Meishu Wang & Hui Gong, 2018. "Not-in-My-Backyard: Legislation Requirements and Economic Analysis for Developing Underground Wastewater Treatment Plant in China," IJERPH, MDPI, vol. 15(11), pages 1-10, October.
    18. Tang Yao & Yigang Wei & Jianhong Zhang & Yani Wang & Yunjiang Yu & Wenyang Huang, 2022. "What influences the urban sewage discharge in China? The effect of diversified factors on the urban sewage discharge in different regions of China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 6099-6135, May.
    19. Yan, Peng & Shi, Hong-Xin & Chen, You-Peng & Gao, Xu & Fang, Fang & Guo, Jin-Song, 2020. "Optimization of recovery and utilization pathway of chemical energy from wastewater pollutants by a net-zero energy wastewater treatment model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    20. Horia Andrei & Cristian Andrei Badea & Paul Andrei & Filippo Spertino, 2020. "Energetic-Environmental-Economic Feasibility and Impact Assessment of Grid-Connected Photovoltaic System in Wastewater Treatment Plant: Case Study," Energies, MDPI, vol. 14(1), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:1887-:d:1597662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.