IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7066-d667335.html
   My bibliography  Save this article

Optimal Chiller Loading by Team Particle Swarm Algorithm for Reducing Energy Consumption

Author

Listed:
  • Wen-Shing Lee

    (Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei 106344, Taiwan
    Research Center of Energy Conservation for New Generation of Residential, Commercial, and Industrial Sectors, National Taipei University of Technology, Taipei 106344, Taiwan)

  • Wen-Hsin Lin

    (Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei 106344, Taiwan)

  • Chin-Chi Cheng

    (Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei 106344, Taiwan)

  • Chien-Yu Lin

    (Section of Refrigeration, Taipei Municipal Nangang Vocational High School, Taipei 106344, Taiwan)

Abstract

Energy saving is an important issue for multiple-chiller systems. Optimal chiller loading (OCL) in multiple-chiller systems has been investigated with many optimization algorithms to save energy. Particle swarm optimization (PSO) algorithm has been successful in solving this problem in some cases, but not in all. This study innovatively added a team evolution to the original particle swarm optimization algorithm, called team particle swarm optimization (TPSO). The TPSO enhances the effectiveness of original particle swarm optimization to better solve the OCL problem. The TPSO algorithm is composed of two evolutions: particle evolution and team evolution. The partial load ratio (PLR) of each operating chiller and the on-off state of each chiller are the particle evolution parameters and team evolution parameters, respectively. To evaluate the performance of the proposed method, this paper adopts three case studies so the results generated from the proposed algorithm TPSO, the original particle swarm optimization (PSO) and other recently published algorithms can be compared. In these three case studies, the optimal results generated by using TPSO algorithm are the same as those by other compared algorithms. In case 1 under 5717 RT and 5334 RT cooling load, the results generated using the TPSO are lower than those by the original PSO in the amounts of 63.35 and 79.33 kW, respectively. The results indicated that the TPSO algorithm not only enabled the optimal solution in minimizing energy consumption, but also demonstrated the best stability when compared to other algorithms. In conclusion, the presented TPSO algorithm is an efficient and promising new algorithm for solving the OCL problem.

Suggested Citation

  • Wen-Shing Lee & Wen-Hsin Lin & Chin-Chi Cheng & Chien-Yu Lin, 2021. "Optimal Chiller Loading by Team Particle Swarm Algorithm for Reducing Energy Consumption," Energies, MDPI, vol. 14(21), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7066-:d:667335
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7066/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7066/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chang-Ming Lin & Chun-Yin Wu & Ko-Ying Tseng & Chih-Chiang Ku & Sheng-Fuu Lin, 2019. "Applying Two-Stage Differential Evolution for Energy Saving in Optimal Chiller Loading," Energies, MDPI, vol. 12(4), pages 1-12, February.
    2. Coelho, Leandro dos Santos & Klein, Carlos Eduardo & Sabat, Samrat L. & Mariani, Viviana Cocco, 2014. "Optimal chiller loading for energy conservation using a new differential cuckoo search approach," Energy, Elsevier, vol. 75(C), pages 237-243.
    3. Min-Yong Qi & Jun-Qing Li & Yu-Yan Han & Jin-Xin Dong, 2020. "Optimal Chiller Loading for Energy Conservation Using an Improved Fruit Fly Optimization Algorithm," Energies, MDPI, vol. 13(15), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min-Yong Qi & Jun-Qing Li & Yu-Yan Han & Jin-Xin Dong, 2020. "Optimal Chiller Loading for Energy Conservation Using an Improved Fruit Fly Optimization Algorithm," Energies, MDPI, vol. 13(15), pages 1-18, July.
    2. Huang, Sen & Zuo, Wangda & Sohn, Michael D., 2016. "Amelioration of the cooling load based chiller sequencing control," Applied Energy, Elsevier, vol. 168(C), pages 204-215.
    3. Federica Acerbi & Mirco Rampazzo & Giuseppe De Nicolao, 2020. "An Exact Algorithm for the Optimal Chiller Loading Problem and Its Application to the Optimal Chiller Sequencing Problem," Energies, MDPI, vol. 13(23), pages 1-29, December.
    4. Chang-Ming Lin & Chun-Yin Wu & Ko-Ying Tseng & Chih-Chiang Ku & Sheng-Fuu Lin, 2019. "Applying Two-Stage Differential Evolution for Energy Saving in Optimal Chiller Loading," Energies, MDPI, vol. 12(4), pages 1-12, February.
    5. Guoying Lin & Yuyao Yang & Feng Pan & Sijian Zhang & Fen Wang & Shuai Fan, 2019. "An Optimal Energy-Saving Strategy for Home Energy Management Systems with Bounded Customer Rationality," Future Internet, MDPI, vol. 11(4), pages 1-16, April.
    6. Ho, W.T. & Yu, F.W., 2021. "Improved model and optimization for the energy performance of chiller system with diverse component staging," Energy, Elsevier, vol. 217(C).
    7. Ismaen, Rabah & El Mekkawy, Tarek Y. & Pokharel, Shaligram & Al-Salem, Mohammed, 2022. "System requirements and optimization of multi-chillers district cooling plants," Energy, Elsevier, vol. 246(C).
    8. Yani Bao & Wai Ling Lee & Jie Jia, 2018. "Exergy Analyses and Modelling of a Novel Extra-Low Temperature Dedicated Outdoor Air System," Energies, MDPI, vol. 11(5), pages 1-25, May.
    9. Schmidt, Mischa & Ã…hlund, Christer, 2018. "Smart buildings as Cyber-Physical Systems: Data-driven predictive control strategies for energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 742-756.
    10. Wang, Yijun & Jin, Xinqiao & Shi, Wantao & Wang, Jiangqing, 2019. "Online chiller loading strategy based on the near-optimal performance map for energy conservation," Applied Energy, Elsevier, vol. 238(C), pages 1444-1451.
    11. Whei-Min Lin & Chia-Sheng Tu & Ming-Tang Tsai & Chi-Chun Lo, 2015. "Optimal Energy Reduction Schedules for Ice Storage Air-Conditioning Systems," Energies, MDPI, vol. 8(9), pages 1-18, September.
    12. Li, Ze & Guo, Junfei & Gao, Xinyu & Yang, Xiaohu & He, Ya-Ling, 2023. "A multi-strategy improved sparrow search algorithm of large-scale refrigeration system: Optimal loading distribution of chillers," Applied Energy, Elsevier, vol. 349(C).
    13. Ding, Yan & Wang, Qiaochu & Kong, Xiangfei & Yang, Kun, 2019. "Multi-objective optimisation approach for campus energy plant operation based on building heating load scenarios," Applied Energy, Elsevier, vol. 250(C), pages 1600-1617.
    14. Lian, Kuang-Yow & Hong, Yong-Jie & Chang, Che-Wei & Su, Yu-Wei, 2022. "A novel data-driven optimal chiller loading regulator based on backward modeling approach," Applied Energy, Elsevier, vol. 327(C).
    15. Zheng, Zhi-xin & Li, Jun-qing & Duan, Pei-yong, 2019. "Optimal chiller loading by improved artificial fish swarm algorithm for energy saving," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 227-243.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7066-:d:667335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.