IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i14p3685-d386286.html
   My bibliography  Save this article

Metamodeling for Uncertainty Quantification of a Flood Wave Model for Concrete Dam Breaks

Author

Listed:
  • Anna Kalinina

    (Laboratory for Energy System Analysis, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland)

  • Matteo Spada

    (Laboratory for Energy System Analysis, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland)

  • David F. Vetsch

    (Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Stefano-Franscini-Platz 5, 8093 Zurich, Switzerland)

  • Stefano Marelli

    (Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Stefano-Franscini-Platz 5, 8093 Zurich, Switzerland)

  • Calvin Whealton

    (Laboratory for Energy System Analysis, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland)

  • Peter Burgherr

    (Laboratory for Energy System Analysis, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland)

  • Bruno Sudret

    (Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Stefano-Franscini-Platz 5, 8093 Zurich, Switzerland)

Abstract

Uncertainties in instantaneous dam-break floods are difficult to assess with standard methods (e.g., Monte Carlo simulation) because of the lack of historical observations and high computational costs of the numerical models. In this study, polynomial chaos expansion (PCE) was applied to a dam-break flood model reflecting the population of large concrete dams in Switzerland. The flood model was approximated with a metamodel and uncertainty in the inputs was propagated to the flow quantities downstream of the dam. The study demonstrates that the application of metamodeling for uncertainty quantification in dam-break studies allows for reduced computational costs compared to standard methods. Finally, Sobol’ sensitivity indices indicate that reservoir volume, length of the valley, and surface roughness contributed most to the variability of the outputs. The proposed methodology, when applied to similar studies in flood risk assessment, allows for more generalized risk quantification than conventional approaches.

Suggested Citation

  • Anna Kalinina & Matteo Spada & David F. Vetsch & Stefano Marelli & Calvin Whealton & Peter Burgherr & Bruno Sudret, 2020. "Metamodeling for Uncertainty Quantification of a Flood Wave Model for Concrete Dam Breaks," Energies, MDPI, vol. 13(14), pages 1-25, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3685-:d:386286
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/14/3685/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/14/3685/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zellner, Arnold & Highfield, Richard A., 1988. "Calculation of maximum entropy distributions and approximation of marginalposterior distributions," Journal of Econometrics, Elsevier, vol. 37(2), pages 195-209, February.
    2. Philipp Arbenz, 2013. "Bayesian Copulae Distributions, with Application to Operational Risk Management—Some Comments," Methodology and Computing in Applied Probability, Springer, vol. 15(1), pages 105-108, March.
    3. Sudret, Bruno, 2008. "Global sensitivity analysis using polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 964-979.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amir Abdel Menaem & Rustam Valiev & Vladislav Oboskalov & Taher S. Hassan & Hegazy Rezk & Mohamed N. Ibrahim, 2020. "An Efficient Framework for Adequacy Evaluation through Extraction of Rare Load Curtailment Events in Composite Power Systems," Mathematics, MDPI, vol. 8(11), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Harenberg & Stefano Marelli & Bruno Sudret & Viktor Winschel, 2019. "Uncertainty quantification and global sensitivity analysis for economic models," Quantitative Economics, Econometric Society, vol. 10(1), pages 1-41, January.
    2. Wang, Zequn & Wang, Pingfeng, 2015. "A double-loop adaptive sampling approach for sensitivity-free dynamic reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 346-356.
    3. Puppo, L. & Pedroni, N. & Maio, F. Di & Bersano, A. & Bertani, C. & Zio, E., 2021. "A Framework based on Finite Mixture Models and Adaptive Kriging for Characterizing Non-Smooth and Multimodal Failure Regions in a Nuclear Passive Safety System," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    4. Carol Alexander & Jose Maria Sarabia, 2010. "Endogenizing Model Risk to Quantile Estimates," ICMA Centre Discussion Papers in Finance icma-dp2010-07, Henley Business School, University of Reading.
    5. Cheng, Kai & Lu, Zhenzhou, 2018. "Sparse polynomial chaos expansion based on D-MORPH regression," Applied Mathematics and Computation, Elsevier, vol. 323(C), pages 17-30.
    6. Chen, Yaqian & Nakao, Hiroya & Kang, Yanmei, 2024. "Emergence of pathological beta oscillation and its uncertainty quantification in a time-delayed feedback Parkinsonian model," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    7. Gaspar, B. & Teixeira, A.P. & Guedes Soares, C., 2017. "Adaptive surrogate model with active refinement combining Kriging and a trust region method," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 277-291.
    8. Palar, Pramudita Satria & Zuhal, Lavi Rizki & Shimoyama, Koji, 2023. "Enhancing the explainability of regression-based polynomial chaos expansion by Shapley additive explanations," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    9. Jung, WoongHee & Taflanidis, Alexandros A., 2023. "Efficient global sensitivity analysis for high-dimensional outputs combining data-driven probability models and dimensionality reduction," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    10. Brown, S. & Beck, J. & Mahgerefteh, H. & Fraga, E.S., 2013. "Global sensitivity analysis of the impact of impurities on CO2 pipeline failure," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 43-54.
    11. Turati, Pietro & Pedroni, Nicola & Zio, Enrico, 2017. "Simulation-based exploration of high-dimensional system models for identifying unexpected events," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 317-330.
    12. Pronzato, Luc, 2019. "Sensitivity analysis via Karhunen–Loève expansion of a random field model: Estimation of Sobol’ indices and experimental design," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 93-109.
    13. Hao, Wenrui & Lu, Zhenzhou & Wei, Pengfei, 2013. "Uncertainty importance measure for models with correlated normal variables," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 48-58.
    14. Pulch, Roland & ter Maten, E. Jan W. & Augustin, Florian, 2015. "Sensitivity analysis and model order reduction for random linear dynamical systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 111(C), pages 80-95.
    15. Yiguo Sun & Thanasis Stengos, 2008. "The absolute health income hypothesis revisited: a semiparametric quantile regression approach," Empirical Economics, Springer, vol. 35(2), pages 395-412, September.
    16. Oladyshkin, S. & Nowak, W., 2012. "Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 179-190.
    17. Wu, Zeping & Wang, Donghui & Okolo N, Patrick & Hu, Fan & Zhang, Weihua, 2016. "Global sensitivity analysis using a Gaussian Radial Basis Function metamodel," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 171-179.
    18. Keshtegar, Behrooz & Chakraborty, Subrata, 2018. "An efficient-robust structural reliability method by adaptive finite-step length based on Armijo line search," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 195-206.
    19. Ehre, Max & Papaioannou, Iason & Straub, Daniel, 2020. "Global sensitivity analysis in high dimensions with PLS-PCE," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    20. Deman, G. & Kerrou, J. & Benabderrahmane, H. & Perrochet, P., 2015. "Sensitivity analysis of groundwater lifetime expectancy to hydro-dispersive parameters: The case of ANDRA Meuse/Haute-Marne site," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 276-286.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3685-:d:386286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.