IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v201y2022icp324-342.html
   My bibliography  Save this article

Exploring dynamical properties of a Type 1 diabetes model using sensitivity approaches

Author

Listed:
  • Al Ali, Hannah
  • Daneshkhah, Alireza
  • Boutayeb, Abdesslam
  • Malunguza, Noble Jahalamajaha
  • Mukandavire, Zindoga

Abstract

The high global prevalence of diabetes, and the extortionate costs imposed on healthcare providers necessitate further research to understand different perspectives of the disease. In this paper, a mathematical model for Type 1 diabetes glucose homeostasis system was developed to better understand disease pathways. Type 1 diabetes pathological state is shown to be globally asymptomatically stable when the model threshold T0<1, and exchanges stability with the managed diabetes equilibrium state i.e. globally asymptotically stable when T0>1. Sensitivity analysis was conducted using partial rank correlation coefficient (PRCC) and Sobol′ method to determine influential model parameters. Sensitivity analysis was performed at different significant time points relevant to diabetes dynamics. Our sensitivity analysis was focused on the model parameters for glucose homeostasis system, at 3 to 4 hour time interval, when the system returns to homeostasis after food uptake. PRCC and Sobol′ method showed that insulin clearance and absorption rates were influential parameters in determining the model response variables at all time points at which sensitivity analysis was performed. PRCC method also showed the model subcutaneous bolus injection term to be important, thus identified all parameters in T0 as influential in determining diabetes model dynamics. Sobol′ method complemented the sensitivity analysis by identifying relationships between parameters. Sensitivity analysis methods concurred in identifying some of the influential parameters and demonstrated that parameters which are influential remain so at every time point. The concurrence of both PRCC and Sobol′ methods in identifying influential parameters (in T0) and their dynamic relationships highlight the importance of statistical and mathematical analytic approaches in understanding the processes modeled by the parameters in the glucose homeostasis system.

Suggested Citation

  • Al Ali, Hannah & Daneshkhah, Alireza & Boutayeb, Abdesslam & Malunguza, Noble Jahalamajaha & Mukandavire, Zindoga, 2022. "Exploring dynamical properties of a Type 1 diabetes model using sensitivity approaches," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 324-342.
  • Handle: RePEc:eee:matcom:v:201:y:2022:i:c:p:324-342
    DOI: 10.1016/j.matcom.2022.05.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475422001963
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.05.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sudret, Bruno, 2008. "Global sensitivity analysis using polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 964-979.
    2. Daneshkhah, Alireza & Bedford, Tim, 2013. "Probabilistic sensitivity analysis of system availability using Gaussian processes," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 82-93.
    3. Gramacy, Robert B., 2007. "tgp: An R Package for Bayesian Nonstationary, Semiparametric Nonlinear Regression and Design by Treed Gaussian Process Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 19(i09).
    4. Daneshkhah, A. & Stocks, N.G. & Jeffrey, P., 2017. "Probabilistic sensitivity analysis of optimised preventive maintenance strategies for deteriorating infrastructure assets," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 33-45.
    5. Jeremy E. Oakley & Anthony O'Hagan, 2004. "Probabilistic sensitivity analysis of complex models: a Bayesian approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 751-769, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel W. Gladish & Daniel E. Pagendam & Luk J. M. Peeters & Petra M. Kuhnert & Jai Vaze, 2018. "Emulation Engines: Choice and Quantification of Uncertainty for Complex Hydrological Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(1), pages 39-62, March.
    2. Horiguchi, Akira & Pratola, Matthew T. & Santner, Thomas J., 2021. "Assessing variable activity for Bayesian regression trees," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    3. Paul Kent & Soroush Abolfathi & Hannah Al Ali & Tabassom Sedighi & Omid Chatrabgoun & Alireza Daneshkhah, 2024. "Resilient Coastal Protection Infrastructures: Probabilistic Sensitivity Analysis of Wave Overtopping Using Gaussian Process Surrogate Models," Sustainability, MDPI, vol. 16(20), pages 1-22, October.
    4. Pronzato, Luc, 2019. "Sensitivity analysis via Karhunen–Loève expansion of a random field model: Estimation of Sobol’ indices and experimental design," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 93-109.
    5. Wu, Zeping & Wang, Donghui & Okolo N, Patrick & Hu, Fan & Zhang, Weihua, 2016. "Global sensitivity analysis using a Gaussian Radial Basis Function metamodel," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 171-179.
    6. Cremona, Marzia A. & Liu, Binbin & Hu, Yang & Bruni, Stefano & Lewis, Roger, 2016. "Predicting railway wheel wear under uncertainty of wear coefficient, using universal kriging," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 49-59.
    7. Li, Genyuan & Rabitz, Herschel, 2017. "Relationship between sensitivity indices defined by variance- and covariance-based methods," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 136-157.
    8. Zitrou, A. & Bedford, T. & Daneshkhah, A., 2013. "Robustness of maintenance decisions: Uncertainty modelling and value of information," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 60-71.
    9. Daneshkhah, Alireza & Bedford, Tim, 2013. "Probabilistic sensitivity analysis of system availability using Gaussian processes," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 82-93.
    10. Awad, Mahmoud, 2017. "Analyzing sensitivity measures using moment-matching technique," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 90-99.
    11. Ye, Dongwei & Nikishova, Anna & Veen, Lourens & Zun, Pavel & Hoekstra, Alfons G., 2021. "Non-intrusive and semi-intrusive uncertainty quantification of a multiscale in-stent restenosis model," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    12. Blatman, Géraud & Sudret, Bruno, 2010. "Efficient computation of global sensitivity indices using sparse polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1216-1229.
    13. Barry Anderson & Emanuele Borgonovo & Marzio Galeotti & Roberto Roson, 2014. "Uncertainty in Climate Change Modeling: Can Global Sensitivity Analysis Be of Help?," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 271-293, February.
    14. repec:jss:jstsof:33:i06 is not listed on IDEAS
    15. Wang, Zhenqiang & Jia, Gaofeng, 2020. "Augmented sample-based approach for efficient evaluation of risk sensitivity with respect to epistemic uncertainty in distribution parameters," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    16. Arnst, M. & Goyal, K., 2017. "Sensitivity analysis of parametric uncertainties and modeling errors in computational-mechanics models by using a generalized probabilistic modeling approach," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 394-405.
    17. Daniel W. Gladish & Ross Darnell & Peter J. Thorburn & Bhakti Haldankar, 2019. "Emulated Multivariate Global Sensitivity Analysis for Complex Computer Models Applied to Agricultural Simulators," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(1), pages 130-153, March.
    18. Mirko Ginocchi & Ferdinanda Ponci & Antonello Monti, 2021. "Sensitivity Analysis and Power Systems: Can We Bridge the Gap? A Review and a Guide to Getting Started," Energies, MDPI, vol. 14(24), pages 1-59, December.
    19. Matieyendou Lamboni, 2020. "Uncertainty quantification: a minimum variance unbiased (joint) estimator of the non-normalized Sobol’ indices," Statistical Papers, Springer, vol. 61(5), pages 1939-1970, October.
    20. Lambert, Romain S.C. & Lemke, Frank & Kucherenko, Sergei S. & Song, Shufang & Shah, Nilay, 2016. "Global sensitivity analysis using sparse high dimensional model representations generated by the group method of data handling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 128(C), pages 42-54.
    21. Deman, G. & Konakli, K. & Sudret, B. & Kerrou, J. & Perrochet, P. & Benabderrahmane, H., 2016. "Using sparse polynomial chaos expansions for the global sensitivity analysis of groundwater lifetime expectancy in a multi-layered hydrogeological model," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 156-169.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:201:y:2022:i:c:p:324-342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.