IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v21y2013icp674-683.html
   My bibliography  Save this article

Energy-saving potential of the industrial sector of Taiwan

Author

Listed:
  • Lu, Shyi-Min
  • Lu, Ching
  • Tseng, Kuo-Tung
  • Chen, Falin
  • Chen, Chen-Liang

Abstract

The purpose of this article is to assess the maximal reduction potentials of energy use and greenhouse gas (GHG) emissions for the six most energy-intensive industries in Taiwan-chemical materials, electric machinery, iron and steel, textiles, cement, and paper and pulp. The assessment methodology is based on the so-called Best Available Technologies (BAT) by the Internal Energy Agency (IEA). By taking 2010 as base year, the assessments resulted that the total energy savings in Taiwan's industrial sector will be 66.3TWh, about 5.3% of the national energy use per year. Wherein, the heat saving is 49.7TWh, the electricity saving is about 16.6TWh. The maximal GHG emissions reduction of these six industries reaches 16.2Mt-CO2e, about 6.4% of the national GHG emissions. The energy use and GHG emissions in the industrial sector account for about 53.8% and 48.3% by taking the entire nation as a whole. Meanwhile, the industrial annual production value in Taiwan is up to NT$ 14.7 trillion. Therefore, if the energy use and the GHG emissions were improved as the above assessments, the country's overall economic strength and environmental integrity will be enhanced substantially and significantly.

Suggested Citation

  • Lu, Shyi-Min & Lu, Ching & Tseng, Kuo-Tung & Chen, Falin & Chen, Chen-Liang, 2013. "Energy-saving potential of the industrial sector of Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 674-683.
  • Handle: RePEc:eee:rensus:v:21:y:2013:i:c:p:674-683
    DOI: 10.1016/j.rser.2013.01.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211300052X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.01.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Falin & Lu, Shyi-Min & Wang, Eric & Tseng, Kuo-Tung, 2010. "Renewable energy in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2029-2038, September.
    2. Hong, Gui-Bing & Su, Te-Li & Lee, Jenq-Daw & Hsu, Tsung-Chi & Chen, Hua-Wei, 2010. "Energy conservation potential in Taiwanese textile industry," Energy Policy, Elsevier, vol. 38(11), pages 7048-7053, November.
    3. Saygin, D. & Patel, M.K. & Worrell, E. & Tam, C. & Gielen, D.J., 2011. "Potential of best practice technology to improve energy efficiency in the global chemical and petrochemical sector," Energy, Elsevier, vol. 36(9), pages 5779-5790.
    4. Li, Huiquan & Bao, Weijun & Xiu, Caihong & Zhang, Yi & Xu, Hongbin, 2010. "Energy conservation and circular economy in China's process industries," Energy, Elsevier, vol. 35(11), pages 4273-4281.
    5. Hong, Gui-Bing & Ma, Chih-Ming & Chen, Hua-Wei & Chuang, Kai-Jen & Chang, Chang-Tang & Su, Te-Li, 2011. "Energy flow analysis in pulp and paper industry," Energy, Elsevier, vol. 36(5), pages 3063-3068.
    6. Lewis, Christopher W., 1979. "The potential for energy conservation in U.K. industry," Energy, Elsevier, vol. 4(6), pages 1175-1184.
    7. Yih-Liang Chan, David & Yang, Kuang-Han & Lee, Jenq-Daw & Hong, Gui-Bing, 2010. "The case study of furnace use and energy conservation in iron and steel industry," Energy, Elsevier, vol. 35(4), pages 1665-1670.
    8. Aranda-Usón, Alfonso & Ferreira, Germán & Mainar-Toledo, M.D. & Scarpellini, Sabina & Llera Sastresa, Eva, 2012. "Energy consumption analysis of Spanish food and drink, textile, chemical and non-metallic mineral products sectors," Energy, Elsevier, vol. 42(1), pages 477-485.
    9. Kablan, M.M, 2003. "Energy conservation projects implementation at Jordan’s industrial sector: a total quality management approach," Energy, Elsevier, vol. 28(15), pages 1533-1543.
    10. Chen, Falin & Lu, Shyi-Min & Tseng, Kuo-Tung & Lee, Si-Chen & Wang, Eric, 2010. "Assessment of renewable energy reserves in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2511-2528, December.
    11. Fleiter, Tobias & Fehrenbach, Daniel & Worrell, Ernst & Eichhammer, Wolfgang, 2012. "Energy efficiency in the German pulp and paper industry – A model-based assessment of saving potentials," Energy, Elsevier, vol. 40(1), pages 84-99.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng Wu & Junheng Cheng & Feng Chu, 2021. "Large-scale energy-conscious bi-objective single-machine batch scheduling under time-of-use electricity tariffs via effective iterative heuristics," Annals of Operations Research, Springer, vol. 296(1), pages 471-494, January.
    2. Yuo-Hsien Shiau & Su-Fen Yang & Rishan Adha & Syamsiyatul Muzayyanah, 2022. "Modeling Industrial Energy Demand in Relation to Subsector Manufacturing Output and Climate Change: Artificial Neural Network Insights," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    3. Chuang, Ho-Chiao & Li, Guan-De & Lee, Chen-Ta, 2019. "The efficiency improvement of AC induction motor with constant frequency technology," Energy, Elsevier, vol. 174(C), pages 805-813.
    4. Cai, Wei & Lai, Kee-hung, 2021. "Sustainability assessment of mechanical manufacturing systems in the industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Ouyang, Xiaoling & Lin, Boqiang, 2015. "An analysis of the driving forces of energy-related carbon dioxide emissions in China’s industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 838-849.
    6. Sinha, Rakesh Kumar & Chaturvedi, Nitin Dutt, 2019. "A review on carbon emission reduction in industries and planning emission limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    7. Gómez, Antonio & Dopazo, César & Fueyo, Norberto, 2014. "The causes of the high energy intensity of the Kazakh economy: A characterization of its energy system," Energy, Elsevier, vol. 71(C), pages 556-568.
    8. Chang, Ching-Ter & Lee, Hsing-Chen, 2016. "Taiwan's renewable energy strategy and energy-intensive industrial policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 456-465.
    9. Gang Du & Chuanwang Sun, 2015. "Determinants of Electricity Demand in Nonmetallic Mineral Products Industry: Evidence from a Comparative Study of Japan and China," Sustainability, MDPI, vol. 7(6), pages 1-25, June.
    10. Bhadbhade, Navdeep & Zuberi, M. Jibran S. & Patel, Martin K., 2019. "A bottom-up analysis of energy efficiency improvement and CO2 emission reduction potentials for the swiss metals sector," Energy, Elsevier, vol. 181(C), pages 173-186.
    11. Fábio de Oliveira Neves & Henrique Ewbank & José Arnaldo Frutuoso Roveda & Andrea Trianni & Fernando Pinhabel Marafão & Sandra Regina Monteiro Masalskiene Roveda, 2022. "Economic and Production-Related Implications for Industrial Energy Efficiency: A Logistic Regression Analysis on Cross-Cutting Technologies," Energies, MDPI, vol. 15(4), pages 1-19, February.
    12. Jean Pierre Seclen-Luna & Pablo Moya-Fernández & Ángeles Pereira, 2021. "Exploring the Effects of Innovation Strategies and Size on Manufacturing Firms’ Productivity and Environmental Impact," Sustainability, MDPI, vol. 13(6), pages 1-18, March.
    13. Huang, Yun-Hsun & Chang, Yi-Lin & Fleiter, Tobias, 2016. "A critical analysis of energy efficiency improvement potentials in Taiwan's cement industry," Energy Policy, Elsevier, vol. 96(C), pages 14-26.
    14. Wu, Haitao & Xue, Yan & Hao, Yu & Ren, Siyu, 2021. "How does internet development affect energy-saving and emission reduction? Evidence from China," Energy Economics, Elsevier, vol. 103(C).
    15. Lin, Boqiang & Long, Houyin, 2016. "Input substitution effect in China׳s chemical industry: Evidences and policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1617-1625.
    16. Knoop, Katharina & Lechtenböhmer, Stefan, 2017. "The potential for energy efficiency in the EU Member States – A comparison of studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1097-1105.
    17. He, Kun & Wang, Li, 2017. "A review of energy use and energy-efficient technologies for the iron and steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1022-1039.
    18. Raza, Muhammad Yousaf & Wu, Rongxin & Lin, Boqiang, 2023. "A decoupling process of Pakistan's agriculture sector: Insights from energy and economic perspectives," Energy, Elsevier, vol. 263(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Hsin-Chiu & Chan, David Yih-Liang & Lin, Wei-Chun & Hsu, Chung-Hsuan & Hong, Gui-Bing, 2014. "Status of energy conservation in Taiwan's pulp and paper industry," Energy, Elsevier, vol. 73(C), pages 680-685.
    2. Tian, Jinping & Shi, Han & Li, Xing & Chen, Lujun, 2012. "Measures and potentials of energy-saving in a Chinese fine chemical industrial park," Energy, Elsevier, vol. 46(1), pages 459-470.
    3. Hong, Gui-Bing & Ma, Chih-Ming & Chen, Hua-Wei & Chuang, Kai-Jen & Chang, Chang-Tang & Su, Te-Li, 2011. "Energy flow analysis in pulp and paper industry," Energy, Elsevier, vol. 36(5), pages 3063-3068.
    4. Feng, Chun-Chiang & Chang, Kuei-Feng & Lin, Jin-Xu & Lee, Tsung-Chen & Lin, Shih-Mo, 2022. "Toward green transition in the post Paris Agreement era: The case of Taiwan," Energy Policy, Elsevier, vol. 165(C).
    5. Hong, Gui-Bing & Pan, Tze-Chin & Chan, David Yih-Liang & Liu, I-Hung, 2020. "Bottom-up analysis of industrial waste heat potential in Taiwan," Energy, Elsevier, vol. 198(C).
    6. Shih-Chieh Huang & Shang-Lien Lo & Yen-Ching Lin, 2013. "To Re-Explore the Causality between Barriers to Renewable Energy Development: A Case Study of Wind Energy," Energies, MDPI, vol. 6(9), pages 1-24, August.
    7. Koua, Blaise K. & Koffi, Paul Magloire E. & Gbaha, Prosper & Touré, Siaka, 2015. "Present status and overview of potential of renewable energy in Cote d’Ivoire," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 907-914.
    8. Lu, Shyi-Min & Huang, May-Yao & Su, Pu-Ti & Tseng, Kuo-Tung & Chen, Falin, 2013. "Development strategy of green energy industry for Taipei—A modern medium-sized city," Energy Policy, Elsevier, vol. 62(C), pages 484-492.
    9. Chang, Ching-Ter & Lee, Hsing-Chen, 2016. "Taiwan's renewable energy strategy and energy-intensive industrial policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 456-465.
    10. Pasquale Contestabile & Enrico Di Lauro & Paolo Galli & Cesare Corselli & Diego Vicinanza, 2017. "Offshore Wind and Wave Energy Assessment around Malè and Magoodhoo Island (Maldives)," Sustainability, MDPI, vol. 9(4), pages 1-24, April.
    11. Chang, C.T. & Costa, M. & La Villetta, M. & Macaluso, A. & Piazzullo, D. & Vanoli, L., 2019. "Thermo-economic analyses of a Taiwanese combined CHP system fuelled with syngas from rice husk gasification," Energy, Elsevier, vol. 167(C), pages 766-780.
    12. Hadadpour, Sanaz & Etemad-Shahidi, Amir & Jabbari, Ebrahim & Kamranzad, Bahareh, 2014. "Wave energy and hot spots in Anzali port," Energy, Elsevier, vol. 74(C), pages 529-536.
    13. Bilgili, Mehmet & Ozbek, Arif & Sahin, Besir & Kahraman, Ali, 2015. "An overview of renewable electric power capacity and progress in new technologies in the world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 323-334.
    14. Utlu, Zafer & Kincay, Olcay, 2013. "An assessment of a pulp and paper mill through energy and exergy analyses," Energy, Elsevier, vol. 57(C), pages 565-573.
    15. Izadyar, Nima & Ong, Hwai Chyuan & Chong, W.T. & Leong, K.Y., 2016. "Resource assessment of the renewable energy potential for a remote area: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 908-923.
    16. Lee, Tsung-Han & Huang, Sheng-Rung & Chen, Chiun-Hsun, 2013. "The experimental study on biogas power generation enhanced by using waste heat to preheat inlet gases," Renewable Energy, Elsevier, vol. 50(C), pages 342-347.
    17. Chou, Shuo-Yan & Nguyen, Thi Anh Tuyet & Yu, Tiffany Hui-Kuang & Phan, Nguyen Ky Phuc, 2015. "Financial assessment of government subsidy policy on photovoltaic systems for industrial users: A case study in Taiwan," Energy Policy, Elsevier, vol. 87(C), pages 505-516.
    18. Cheng-Dar Yue & I-Chun Wang & Jhou-Sheng Huang, 2022. "Feasibility of Replacing Nuclear and Fossil Fuel Energy with Offshore Wind Energy: A Case for Taiwan," Energies, MDPI, vol. 15(7), pages 1-20, March.
    19. Ma, Chih-Ming & Chen, Ming-Hue & Hong, Gui-Bing, 2012. "Energy conservation status in Taiwanese food industry," Energy Policy, Elsevier, vol. 50(C), pages 458-463.
    20. Wen, Pei-Ling & Lin, Jin-Xu & Lin, Shih-Mo & Feng, Chun-Chiang & Ko, Fu-Kuang, 2015. "Optimal production of cellulosic ethanol from Taiwan's agricultural waste," Energy, Elsevier, vol. 89(C), pages 294-304.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:21:y:2013:i:c:p:674-683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.