IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i13p3432-d379757.html
   My bibliography  Save this article

Application of Solid-State Transformers in a Novel Architecture of Hybrid AC/DC House Power Systems

Author

Listed:
  • Fabio Bignucolo

    (Department of Industrial Engineering, University of Padova, via Gradenigo 6/a, 35131 Padova, Italy)

  • Manuele Bertoluzzo

    (Department of Industrial Engineering, University of Padova, via Gradenigo 6/a, 35131 Padova, Italy)

Abstract

The ongoing diffusion of solid-state DC/DC converters makes possible a partial migration of electric power systems from the present AC paradigm to a future DC scenario. In addition, the power demand in the domestic environment is expected to grow considerably, for example, due to the progressive diffusion of electric vehicles, induction cooking and heat pumps. To face this evolution, the paper introduces a novel electric topology for a hybrid AC/DC smart house, based on the solid-state transformer technology. The electric scheme, voltage levels and converters types are thoroughly discussed to better integrate the spread of electric appliances, which are frequently based on internal DC buses, within the present AC distribution networks. Voltage levels are determined to guarantee high safety zones with negligible electric risk in the most exposed areas of the house. At the same time, the developed control schemes assure high power quality (voltage stability in the case of both load variations and network perturbations), manage power flows and local resources according to ancillary services requirements and increase the domestic network overall efficiency. Dynamic simulations are performed, making use of DIgSILENT PowerFactory software, to demonstrate the feasibility of the proposed distribution scheme for next-generation smart houses under different operating conditions.

Suggested Citation

  • Fabio Bignucolo & Manuele Bertoluzzo, 2020. "Application of Solid-State Transformers in a Novel Architecture of Hybrid AC/DC House Power Systems," Energies, MDPI, vol. 13(13), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3432-:d:379757
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/13/3432/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/13/3432/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fabio Bignucolo & Alberto Cerretti & Massimiliano Coppo & Andrea Savio & Roberto Turri, 2017. "Impact of Distributed Generation Grid Code Requirements on Islanding Detection in LV Networks," Energies, MDPI, vol. 10(2), pages 1-16, January.
    2. Patrao, Iván & Figueres, Emilio & Garcerá, Gabriel & González-Medina, Raúl, 2015. "Microgrid architectures for low voltage distributed generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 415-424.
    3. Colak, Ilhami & Kabalci, Ersan & Fulli, Gianluca & Lazarou, Stavros, 2015. "A survey on the contributions of power electronics to smart grid systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 562-579.
    4. Fabio Bignucolo & Alberto Cerretti & Massimiliano Coppo & Andrea Savio & Roberto Turri, 2017. "Effects of Energy Storage Systems Grid Code Requirements on Interface Protection Performances in Low Voltage Networks," Energies, MDPI, vol. 10(3), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seyedamin Valedsaravi & Abdelali El Aroudi & Luis Martínez-Salamero, 2022. "Review of Solid-State Transformer Applications on Electric Vehicle DC Ultra-Fast Charging Station," Energies, MDPI, vol. 15(15), pages 1-35, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Simmini & Marco Agostini & Massimiliano Coppo & Tommaso Caldognetto & Andrea Cervi & Fabio Lain & Ruggero Carli & Roberto Turri & Paolo Tenti, 2020. "Leveraging Demand Flexibility by Exploiting Prosumer Response to Price Signals in Microgrids," Energies, MDPI, vol. 13(12), pages 1-19, June.
    2. Xing Luo & Jihong Wang & Jacek D. Wojcik & Jianguo Wang & Decai Li & Mihai Draganescu & Yaowang Li & Shihong Miao, 2018. "Review of Voltage and Frequency Grid Code Specifications for Electrical Energy Storage Applications," Energies, MDPI, vol. 11(5), pages 1-26, April.
    3. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    4. Bustos, Cristian & Watts, David, 2017. "Novel methodology for microgrids in isolated communities: Electricity cost-coverage trade-off with 3-stage technology mix, dispatch & configuration optimizations," Applied Energy, Elsevier, vol. 195(C), pages 204-221.
    5. Aghajani, G.R. & Shayanfar, H.A. & Shayeghi, H., 2017. "Demand side management in a smart micro-grid in the presence of renewable generation and demand response," Energy, Elsevier, vol. 126(C), pages 622-637.
    6. Bracco, Stefano & Delfino, Federico & Pampararo, Fabio & Robba, Michela & Rossi, Mansueto, 2016. "A pilot facility for analysis and simulation of smart microgrids feeding smart buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1247-1255.
    7. Maciej Kuboń & Zbigniew Skibko & Sylwester Tabor & Urszula Malaga-Toboła & Andrzej Borusiewicz & Wacław Romaniuk & Janusz Zarajczyk & Pavel Neuberger, 2023. "Analysis of Voltage Distortions in the Power Grid Arising from Agricultural Biogas Plant Operation," Energies, MDPI, vol. 16(17), pages 1-21, August.
    8. Awan Uji Krismanto & Nadarajah Mithulananthan & Rakibuzzaman Shah & Herlambang Setiadi & Md. Rabiul Islam, 2023. "Small-Signal Stability and Resonance Perspectives in Microgrid: A Review," Energies, MDPI, vol. 16(3), pages 1-21, January.
    9. Siewierski, Tomasz & Szypowski, Michał & Wędzik, Andrzej, 2018. "A review of economic aspects of voltage control in LV smart grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 37-45.
    10. Syed Ali Abbas Kazmi & Muhammad Khuram Shahzad & Akif Zia Khan & Dong Ryeol Shin, 2017. "Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective," Energies, MDPI, vol. 10(4), pages 1-47, April.
    11. Iman Lorzadeh & Hossein Askarian Abyaneh & Mehdi Savaghebi & Alireza Bakhshai & Josep M. Guerrero, 2016. "Capacitor Current Feedback-Based Active Resonance Damping Strategies for Digitally-Controlled Inductive-Capacitive-Inductive-Filtered Grid-Connected Inverters," Energies, MDPI, vol. 9(8), pages 1-32, August.
    12. Jalali, Mehdi & Zare, Kazem & Seyedi, Heresh, 2017. "Strategic decision-making of distribution network operator with multi-microgrids considering demand response program," Energy, Elsevier, vol. 141(C), pages 1059-1071.
    13. Pau Casals-Torrens & Juan A. Martinez-Velasco & Alexandre Serrano-Fontova & Ricard Bosch, 2020. "Assessment of Unintentional Islanding Operations in Distribution Networks with Large Induction Motors," Energies, MDPI, vol. 13(2), pages 1-25, January.
    14. Linda Barelli & Gianni Bidini & Fabio Bonucci & Luca Castellini & Simone Castellini & Andrea Ottaviano & Dario Pelosi & Alberto Zuccari, 2018. "Dynamic Analysis of a Hybrid Energy Storage System (H-ESS) Coupled to a Photovoltaic (PV) Plant," Energies, MDPI, vol. 11(2), pages 1-23, February.
    15. Hoffmann, Martha M. & Ansari, Dawud, 2019. "Simulating the potential of swarm grids for pre-electrified communities – A case study from Yemen," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 108, pages 289-302.
    16. Ashabani, Mahdi & Gooi, Hoay Beng & Guerrero, Josep M., 2018. "Designing high-order power-source synchronous current converters for islanded and grid-connected microgrids," Applied Energy, Elsevier, vol. 219(C), pages 370-384.
    17. Tiara Freitas & João Caliman & Paulo Menegáz & Walbermark dos Santos & Domingos Simonetti, 2021. "A DCM Single-Controlled Three-Phase SEPIC-Type Rectifier," Energies, MDPI, vol. 14(2), pages 1-16, January.
    18. Wajahat Ullah Khan Tareen & Muhammad Aamir & Saad Mekhilef & Mutsuo Nakaoka & Mehdi Seyedmahmoudian & Ben Horan & Mudasir Ahmed Memon & Nauman Anwar Baig, 2018. "Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review," Energies, MDPI, vol. 11(6), pages 1-41, June.
    19. Danny Ochoa & Sergio Martinez, 2018. "Proposals for Enhancing Frequency Control in Weak and Isolated Power Systems: Application to the Wind-Diesel Power System of San Cristobal Island-Ecuador," Energies, MDPI, vol. 11(4), pages 1-25, April.
    20. Luis Hernández-Callejo, 2019. "A Comprehensive Review of Operation and Control, Maintenance and Lifespan Management, Grid Planning and Design, and Metering in Smart Grids," Energies, MDPI, vol. 12(9), pages 1-50, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3432-:d:379757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.