IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i12p2881-d1413306.html
   My bibliography  Save this article

Use of Biostimulants in Energy Crops as a New Approach for the Improvement of Performance Sequestration CO 2

Author

Listed:
  • Andrzej Rostocki

    (Łukasiewicz Research Network—Lodz Institute of Technology, Marii Sklodowskiej-Curie 19/27, 90-570 Lodz, Poland
    Interdisciplinary Doctoral School, Lodz University of Technology, Zeromskiego 116, 90-543 Lodz, Poland)

  • Dorota Wieczorek

    (Łukasiewicz Research Network—Lodz Institute of Technology, Marii Sklodowskiej-Curie 19/27, 90-570 Lodz, Poland)

  • Paulina Pipiak

    (Łukasiewicz Research Network—Lodz Institute of Technology, Marii Sklodowskiej-Curie 19/27, 90-570 Lodz, Poland)

  • Katarzyna Ławińska

    (Łukasiewicz Research Network—Lodz Institute of Technology, Marii Sklodowskiej-Curie 19/27, 90-570 Lodz, Poland)

Abstract

This review presents a recent study on improving energy crops (ECs) in the EU and discusses the potential use of biostimulants to enhance CO 2 sequestration processes in these plants. The novelty of this study lies in demonstrating alternative directions for improving productivity and increasing plant yield without relying on introducing new hybrids (GM) or using advanced agrotechnology. There is a great deal of discussion about using energy crops for direct combustion or biogas production. However, there is a paucity of information regarding the use of biostimulants and their role in increasing the yield of energy crops, particularly in terms of CO 2 compensation. In CO 2 sequestration, increasing the intensity of the photosynthetic process is considered crucial for the more efficient growth of energy crops. Traditionally, fertilization aimed at improving photosynthesis results in a large amount of alkaline elements, which can cause negative effects in boilers. This paper describes the use of amino acid biostimulants extracted from industrial waste, either chemically or biotechnologically, and their different forms of application. It addresses the current challenges and benefits of using biostimulants in energy crops to increase photosynthesis without the use of genetic engineering tools in plants.

Suggested Citation

  • Andrzej Rostocki & Dorota Wieczorek & Paulina Pipiak & Katarzyna Ławińska, 2024. "Use of Biostimulants in Energy Crops as a New Approach for the Improvement of Performance Sequestration CO 2," Energies, MDPI, vol. 17(12), pages 1-23, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2881-:d:1413306
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/12/2881/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/12/2881/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zvanaka S. Mazhandu & Edison Muzenda & Tirivaviri A. Mamvura & Mohamed Belaid & Trust Nhubu, 2020. "Integrated and Consolidated Review of Plastic Waste Management and Bio-Based Biodegradable Plastics: Challenges and Opportunities," Sustainability, MDPI, vol. 12(20), pages 1-57, October.
    2. S. B. Chavan & R. S. Dhillon & Ajit & R. H. Rizvi & Chhavi Sirohi & A. K. Handa & K. K. Bharadwaj & Vishal Johar & Tarun Kumar & Pradyuman Singh & Vijay Daneva & Sushil Kumari, 2022. "Estimating biomass production and carbon sequestration of poplar-based agroforestry systems in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 13493-13521, December.
    3. Stolarski, Mariusz J. & Krzyżaniak, Michał & Tworkowski, Józef & Szczukowski, Stefan & Niksa, Dariusz, 2016. "Analysis of the energy efficiency of short rotation woody crops biomass as affected by different methods of soil enrichment," Energy, Elsevier, vol. 113(C), pages 748-761.
    4. Vasiliki Tzelepi & Myrto Zeneli & Dimitrios-Sotirios Kourkoumpas & Emmanouil Karampinis & Antonios Gypakis & Nikos Nikolopoulos & Panagiotis Grammelis, 2020. "Biomass Availability in Europe as an Alternative Fuel for Full Conversion of Lignite Power Plants: A Critical Review," Energies, MDPI, vol. 13(13), pages 1-26, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stachowicz, Paweł & Stolarski, Mariusz J., 2024. "Pellets from mixtures of short rotation coppice with forest-derived biomass: Production costs and energy intensity," Renewable Energy, Elsevier, vol. 225(C).
    2. Jaafari, Abolfazl, 2023. "Mapping high poplar growth areas for bioenergy cultivation: A swarm-optimized approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    3. Nikolaos Apostolopoulos & Alexandros Kakouris & Panagiotis Liargovas & Petar Borisov & Teodor Radev & Sotiris Apostolopoulos & Sofia Daskou & Eleni Ε. Anastasopoulou, 2023. "Just Transition Policies, Power Plant Workers and Green Entrepreneurs in Greece, Cyprus and Bulgaria: Can Education and Retraining Meet the Challenge?," Sustainability, MDPI, vol. 15(23), pages 1-21, November.
    4. Jakub Jan Zięty & Ewelina Olba-Zięty & Mariusz Jerzy Stolarski & Michał Krzykowski & Michał Krzyżaniak, 2022. "Legal Framework for the Sustainable Production of Short Rotation Coppice Biomass for Bioeconomy and Bioenergy," Energies, MDPI, vol. 15(4), pages 1-19, February.
    5. Leanda C. Garvie & David J. Lee & Biljana Kulišić, 2024. "Towards a Bioeconomy: Supplying Forest Residues for the Australian Market," Energies, MDPI, vol. 17(2), pages 1-19, January.
    6. Stolarski, Mariusz J. & Krzyżaniak, Michał & Warmiński, Kazimierz & Tworkowski, Józef & Szczukowski, Stefan & Olba–Zięty, Ewelina & Gołaszewski, Janusz, 2017. "Energy efficiency of perennial herbaceous crops production depending on the type of digestate and mineral fertilizers," Energy, Elsevier, vol. 134(C), pages 50-60.
    7. Timur Kogabayev & Anne Põder & Henrik Barth & Rando Värnik, 2023. "Prospects for Wood Pellet Production in Kazakhstan: A Case Study on Business Model Adjustment," Energies, MDPI, vol. 16(15), pages 1-20, August.
    8. Giovanni Gadaleta & Sabino De Gisi & Francesco Todaro & Michele Notarnicola, 2022. "Carbon Footprint and Total Cost Evaluation of Different Bio-Plastics Waste Treatment Strategies," Clean Technol., MDPI, vol. 4(2), pages 1-14, June.
    9. Ewelina Olba-Zięty & Jakub Jan Zięty & Mariusz Jerzy Stolarski, 2023. "External Environmental Costs of Solid Biomass Production against the Legal and Political Background in Europe," Energies, MDPI, vol. 16(10), pages 1-27, May.
    10. Grzegorz Pełka & Marta Jach-Nocoń & Marcin Paprocki & Artur Jachimowski & Wojciech Luboń & Adam Nocoń & Mateusz Wygoda & Paweł Wyczesany & Przemysław Pachytel & Tomasz Mirowski, 2023. "Comparison of Emissions and Efficiency of Two Types of Burners When Burning Wood Pellets from Different Suppliers," Energies, MDPI, vol. 16(4), pages 1-18, February.
    11. Stolarski, Mariusz Jerzy & Warmiński, Kazimierz & Krzyżaniak, Michał & Olba–Zięty, Ewelina & Stachowicz, Paweł, 2020. "Energy consumption and heating costs for a detached house over a 12-year period – Renewable fuels versus fossil fuels," Energy, Elsevier, vol. 204(C).
    12. Gioele Di Marcoberardino & Costante Mario Invernizzi & Paolo Iora & Luca Arosio & Marcello Canavese & Angelo Lunghi & Antonella Mazzei, 2022. "Thermal Stability and Thermodynamic Performances of Pure Siloxanes and Their Mixtures in Organic Rankine Cycles," Energies, MDPI, vol. 15(10), pages 1-20, May.
    13. Choi, Hong Il & Sung, Young Joon & Hong, Min Eui & Han, Jonghee & Min, Byoung Koun & Sim, Sang Jun, 2022. "Reconsidering the potential of direct microalgal biomass utilization as end-products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    14. Staffan Qvist & Paweł Gładysz & Łukasz Bartela & Anna Sowiżdżał, 2020. "Retrofit Decarbonization of Coal Power Plants—A Case Study for Poland," Energies, MDPI, vol. 14(1), pages 1-37, December.
    15. Aravani, Vasiliki P. & Sun, Hangyu & Yang, Ziyi & Liu, Guangqing & Wang, Wen & Anagnostopoulos, George & Syriopoulos, George & Charisiou, Nikolaos D. & Goula, Maria A. & Kornaros, Michael & Papadakis,, 2022. "Agricultural and livestock sector's residues in Greece & China: Comparative qualitative and quantitative characterization for assessing their potential for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    16. Gilbert Ahamer, 2022. "Why Biomass Fuels Are Principally Not Carbon Neutral," Energies, MDPI, vol. 15(24), pages 1-39, December.
    17. Stolarski, Mariusz J. & Krzyżaniak, Michał & Kwiatkowski, Jacek & Tworkowski, Józef & Szczukowski, Stefan, 2018. "Energy and economic efficiency of camelina and crambe biomass production on a large-scale farm in north-eastern Poland," Energy, Elsevier, vol. 150(C), pages 770-780.
    18. Chrysoula Pagouni & Francis Pavloudakis & Ioannis Kapageridis & Athena Yiannakou, 2024. "Transitional and Post-Mining Land Uses: A Global Review of Regulatory Frameworks, Decision-Making Criteria, and Methods," Land, MDPI, vol. 13(7), pages 1-27, July.
    19. Qiang Wang & Thomas Dogot & Yueling Yang & Jian Jiao & Boyang Shi & Changbin Yin, 2020. "From “Coal to Gas” to “Coal to Biomass”: The Strategic Choice of Social Capital in China," Energies, MDPI, vol. 13(16), pages 1-22, August.
    20. Rahaf Ajaj & Wisam Abu Jadayil & Hamna Anver & Eman Aqil, 2022. "A Revision for the Different Reuses of Polyethylene Terephthalate (PET) Water Bottles," Sustainability, MDPI, vol. 14(8), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2881-:d:1413306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.