IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i13p3368-d378927.html
   My bibliography  Save this article

Recovery Technology of Bottom Coal in the Gob-Side Entry of Thick Coal Seam Based on Floor Heave Induced by Narrow Coal Pillar

Author

Listed:
  • Kai Wang

    (State Key Laboratory of Coal Resources and Safe Mining, School of Mines, China University of Mining & Technology, Xuzhou 221116, China
    Department of Mining Engineering, Shanxi Institute of Technology, Yangquan 045000, China)

  • Yanli Huang

    (State Key Laboratory of Coal Resources and Safe Mining, School of Mines, China University of Mining & Technology, Xuzhou 221116, China)

  • Huadong Gao

    (State Key Laboratory of Coal Resources and Safe Mining, School of Mines, China University of Mining & Technology, Xuzhou 221116, China)

  • Wen Zhai

    (State Key Laboratory of Coal Resources and Safe Mining, School of Mines, China University of Mining & Technology, Xuzhou 221116, China
    National Energy Group Ningxia Coal Industry Co., Ltd. Zaoquan Coal Mine, Yinchuan 751400, China)

  • Yongfeng Qiao

    (Department of Electrical Engineering and Automation, Shanxi Institute of Technology, Yangquan 045000, China)

  • Junmeng Li

    (State Key Laboratory of Coal Resources and Safe Mining, School of Mines, China University of Mining & Technology, Xuzhou 221116, China)

  • Shenyang Ouyang

    (State Key Laboratory of Coal Resources and Safe Mining, School of Mines, China University of Mining & Technology, Xuzhou 221116, China)

  • Wei Li

    (State Key Laboratory of Coal Resources and Safe Mining, School of Mines, China University of Mining & Technology, Xuzhou 221116, China)

Abstract

To improve the resource recovery efficiency of mining face in thick coal seams, the correlation between deformation failure of bottom coal in the gob-side entry and coal pillar width was analyzed by theoretical analysis, numerical calculation, and similar simulation experiments. The results showed that, when the coal pillar was strong, with the decrease of pillar width, the failure depth of the bottom coal in the gob-side entry and floor heave increased. The deformation failure depth of the bottom coal in the entry was inversely related to the width of the coal pillar. The bottom coal was further fractured and dispersed under the action of tension, shear, and extrusion in the process of floor heave. Based on the floor heave induced by the narrow coal pillar, a recovery technique of the bottom coal with thick coal seams in the gob-side entry was developed. The width of the narrow pillar to be reserved was obtained by theoretical calculation and revised by numerical simulation; ultimately, the reasonable width was determined. Under the complex stress of the narrow pillar, the bottom coal in the gob-side entry was fully heaved, cracked, and separated. To realize the comprehensive mechanization and resource recovery of bottom coal, a matching mining excavator loader, transfer conveyor, and retractable belt conveyor were selected to transport the crushed bottom coal in the entry. This method has been successfully applied to the return airway of working face 8407 in the No. 5 Coal Mine of Yangquan Coal Group with remarkable economic and social benefits.

Suggested Citation

  • Kai Wang & Yanli Huang & Huadong Gao & Wen Zhai & Yongfeng Qiao & Junmeng Li & Shenyang Ouyang & Wei Li, 2020. "Recovery Technology of Bottom Coal in the Gob-Side Entry of Thick Coal Seam Based on Floor Heave Induced by Narrow Coal Pillar," Energies, MDPI, vol. 13(13), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3368-:d:378927
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/13/3368/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/13/3368/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Housheng Jia & Luyao Wang & Kai Fan & Bo Peng & Kun Pan, 2019. "Control Technology of Soft Rock Floor in Mining Roadway with Coal Pillar Protection: A case study," Energies, MDPI, vol. 12(15), pages 1-21, August.
    2. Jinzhu Hu & Manchao He & Jiong Wang & Zimin Ma & Yajun Wang & Xingyu Zhang, 2019. "Key Parameters of Roof Cutting of Gob-Side Entry Retaining in a Deep Inclined Thick Coal Seam with Hard Roof," Energies, MDPI, vol. 12(5), pages 1-19, March.
    3. Jingjing Dai & Pengfei Shan & Qi Zhou, 2020. "Study on Intelligent Identification Method of Coal Pillar Stability in Fully Mechanized Caving Face of Thick Coal Seam," Energies, MDPI, vol. 13(2), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kuidong Gao & Xiaodi Zhang & Liqing Sun & Qingliang Zeng & Zhihai Liu, 2021. "Loading Performance of a Novel Shearer Drum Applied to Thin Coal Seams," Energies, MDPI, vol. 14(2), pages 1-21, January.
    2. Yongli Liu & Jingtao Li & Yanwei Duan & Tao Qin & Zhenwen Liu, 2023. "Study on the Influence of Roadway Structural Morphology on the Mechanical Properties of Weakly Cemented Soft Rock Roadways," Sustainability, MDPI, vol. 15(1), pages 1-16, January.
    3. Dejian Ma & Xin Zhang & Lirong Wan & Qingliang Zeng & Hongen Ge, 2020. "Dynamic Analysis of Shearer Traction Unit Considering the Longitudinal Swing," Energies, MDPI, vol. 13(20), pages 1-15, October.
    4. Shengrong Xie & Fangfang Guo & Yiyi Wu, 2022. "Control Techniques for Gob-Side Entry Driving in an Extra-Thick Coal Seam with the Influence of Upper Residual Coal Pillar: A Case Study," Energies, MDPI, vol. 15(10), pages 1-21, May.
    5. Piotr Małkowski & Łukasz Ostrowski & Łukasz Bednarek, 2020. "The Effect of Selected Factors on Floor Upheaval in Roadways—In Situ Testing," Energies, MDPI, vol. 13(21), pages 1-23, October.
    6. Yongkang Yang & Xuecong Xu & Chenlong Wang, 2023. "Study on the Mechanism of Surrounding Rock Deformation and Its Control for Roof Cutting Retained Gob-Side Entry in Close-Distance Coal Seams Co-Mining," Energies, MDPI, vol. 16(11), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen Li & Xiaofei Guo & Xiaoyong Lian & Nianjie Ma, 2020. "Failure Analysis of a Pre-Excavation Double Equipment Withdrawal Channel and Its Control Techniques," Energies, MDPI, vol. 13(23), pages 1-17, December.
    2. Xiaoyu Liu & Manchao He & Jiong Wang & Zimin Ma, 2021. "Research on Non-Pillar Coal Mining for Thick and Hard Conglomerate Roof," Energies, MDPI, vol. 14(2), pages 1-14, January.
    3. Shengrong Xie & Yiyi Wu & Fangfang Guo & Hang Zou & Dongdong Chen & Xiao Zhang & Xiang Ma & Ruipeng Liu & Chaowen Wu, 2022. "Application of Pre-Splitting and Roof-Cutting Control Technology in Coal Mining: A Review of Technology," Energies, MDPI, vol. 15(17), pages 1-20, September.
    4. Xinshuai Shi & Hongwen Jing & Zhenlong Zhao & Yuan Gao & Yuanchao Zhang & Ruodi Bu, 2020. "Physical Experiment and Numerical Modeling on the Failure Mechanism of Gob-Side Entry Driven in Thick Coal Seam," Energies, MDPI, vol. 13(20), pages 1-24, October.
    5. Feng Cui & Shuai Dong & Xingping Lai & Jianqiang Chen & Chong Jia & Tinghui Zhang, 2020. "Study on the Fracture Law of Inclined Hard Roof and Surrounding Rock Control of Mining Roadway in Longwall Mining Face," Energies, MDPI, vol. 13(20), pages 1-22, October.
    6. Zhenqian Ma & Dongyue Zhang & Yunqin Cao & Wei Yang & Biao Xu, 2022. "Study of Key Technology of Gob-Side Entry Retention in a High Gas Outburst Coal Seam in the Karst Mountain Area," Energies, MDPI, vol. 15(11), pages 1-21, June.
    7. Xingyu Zhang & Liang Chen & Yubing Gao & Jinzhu Hu & Jun Yang & Manchao He, 2019. "Study of An Innovative Approach of Roof Presplitting for Gob-Side Entry Retaining in Longwall Coal Mining," Energies, MDPI, vol. 12(17), pages 1-16, August.
    8. Xuming Zhou & Haotian Li & Xuelong Li & Jianwei Wang & Jingjing Meng & Mingze Li & Chengwei Mei, 2022. "Research on Gob-Side Entry Retaining Mining of Fully Mechanized Working Face in Steeply Inclined Coal Seam: A Case in Xinqiang Coal Mine," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
    9. Zhao, Pengxiang & Zhuo, Risheng & Li, Shugang & Shu, Chi-Min & Jia, Yongyong & Lin, Haifei & Chang, Zechen & Ho, Chun-Hsing & Laiwang, Bin & Xiao, Peng, 2021. "Fractal characteristics of methane migration channels in inclined coal seams," Energy, Elsevier, vol. 225(C).
    10. Ning Li & Masoud Zare & Congke Yi & Rafael Jimenez, 2022. "Stability Risk Assessment of Underground Rock Pillars Using Logistic Model Trees," IJERPH, MDPI, vol. 19(4), pages 1-19, February.
    11. Zhibiao Guo & Haohao Wang & Zimin Ma & Pengfei Wang & Xiaohui Kuai & Xianzhe Zhang, 2021. "Research on the Transmission of Stresses by Roof Cutting near Gob Rocks," Energies, MDPI, vol. 14(5), pages 1-24, February.
    12. Pengxiang Zhao & Wenjin Zhang & Shugang Li & Zechen Chang & Yajie Lu & Congying Cao & Yu Shi & Yongyong Jia & Fang Lou & Zongyong Wei & Jun Liu, 2022. "Numerical Simulation Study on Mechanical Characteristics and Width Optimization of Narrow Coal Pillar in Gob-Side Coal Seam Tunnel," Sustainability, MDPI, vol. 14(23), pages 1-17, November.
    13. Zhibiao Guo & Weitao Li & Songyang Yin & Dongshan Yang & Zhibo Ma, 2021. "An Innovative Technology for Monitoring the Distribution of Abutment Stress in Longwall Mining," Energies, MDPI, vol. 14(2), pages 1-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3368-:d:378927. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.