IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i11p4161-d832400.html
   My bibliography  Save this article

Study of Key Technology of Gob-Side Entry Retention in a High Gas Outburst Coal Seam in the Karst Mountain Area

Author

Listed:
  • Zhenqian Ma

    (School of Mining, Guizhou University, Guiyang 550025, China)

  • Dongyue Zhang

    (School of Mining, Guizhou University, Guiyang 550025, China)

  • Yunqin Cao

    (School of Mining, Guizhou University, Guiyang 550025, China)

  • Wei Yang

    (Guizhou Panjiang Coal and Electricity Group Technology Research Institute Co., Ltd., Guiyang 550081, China)

  • Biao Xu

    (Guizhou Qianxi Honglin Mining Co., Ltd., Bijie 551500, China)

Abstract

In the gob-side entry retaining by roof cutting (GERRC) technique, pressure is offloaded via directional roof cutting, and a roadway is automatically formed due to the ground pressure and rock-breaking expansion. To improve the application of the theory and technical system of GERRC in the Karst area in Southwest China, this research studies the key technology of GERRC in a high gas outburst coal seam, based on the engineering background of the 39114 working face of the Honglin coal mine. According to the geological conditions of the 39114 working face, by means of formula calculation, UDEC numerical modeling, and on-site drilling peeping, the optimal roof-cutting parameters suitable for the 39114 working face were determined: the roof cutting height was 7 m, the roof cutting angle was 15°, and the spacing of pre-splitting blasting holes was 600 mm. Additionally, the above roof-cutting parameters have achieved good results in the engineering practices of the 39114 transportation roadway, which shows that the technology of GERRC is feasible in high gas outburst mines and achieves the goal of safe and efficient mining.

Suggested Citation

  • Zhenqian Ma & Dongyue Zhang & Yunqin Cao & Wei Yang & Biao Xu, 2022. "Study of Key Technology of Gob-Side Entry Retention in a High Gas Outburst Coal Seam in the Karst Mountain Area," Energies, MDPI, vol. 15(11), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4161-:d:832400
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/11/4161/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/11/4161/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yajun Wang & Yubing Gao & Eryu Wang & Manchao He & Jun Yang, 2018. "Roof Deformation Characteristics and Preventive Techniques Using a Novel Non-Pillar Mining Method of Gob-Side Entry Retaining by Roof Cutting," Energies, MDPI, vol. 11(3), pages 1-17, March.
    2. Manchao He & Yubing Gao & Jun Yang & Weili Gong, 2017. "An Innovative Approach for Gob-Side Entry Retaining in Thick Coal Seam Longwall Mining," Energies, MDPI, vol. 10(11), pages 1-22, November.
    3. Zimin Ma & Jiong Wang & Manchao He & Yubing Gao & Jinzhu Hu & Qiong Wang, 2018. "Key Technologies and Application Test of an Innovative Noncoal Pillar Mining Approach: A Case Study," Energies, MDPI, vol. 11(10), pages 1-22, October.
    4. Jinzhu Hu & Manchao He & Jiong Wang & Zimin Ma & Yajun Wang & Xingyu Zhang, 2019. "Key Parameters of Roof Cutting of Gob-Side Entry Retaining in a Deep Inclined Thick Coal Seam with Hard Roof," Energies, MDPI, vol. 12(5), pages 1-19, March.
    5. Xingen Ma & Manchao He & Jiong Wang & Yubing Gao & Daoyong Zhu & Yuxing Liu, 2018. "Mine Strata Pressure Characteristics and Mechanisms in Gob-Side Entry Retention by Roof Cutting under Medium-Thick Coal Seam and Compound Roof Conditions," Energies, MDPI, vol. 11(10), pages 1-25, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chaowen Hu & Eryu Wang & Qian Li & Yilong Wang & Yongyuan Li & Xingfeng Sha, 2022. "Research on the Key Technology of Gob-Side Entry Retaining by Roof Cutting for Thick and Hard Sandstone Roofs," Sustainability, MDPI, vol. 14(16), pages 1-14, August.
    2. Xuming Zhou & Haotian Li & Xuelong Li & Jianwei Wang & Jingjing Meng & Mingze Li & Chengwei Mei, 2022. "Research on Gob-Side Entry Retaining Mining of Fully Mechanized Working Face in Steeply Inclined Coal Seam: A Case in Xinqiang Coal Mine," Sustainability, MDPI, vol. 14(16), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoyu Liu & Manchao He & Jiong Wang & Zimin Ma, 2021. "Research on Non-Pillar Coal Mining for Thick and Hard Conglomerate Roof," Energies, MDPI, vol. 14(2), pages 1-14, January.
    2. Zhibiao Guo & Weitao Li & Songyang Yin & Dongshan Yang & Zhibo Ma, 2021. "An Innovative Technology for Monitoring the Distribution of Abutment Stress in Longwall Mining," Energies, MDPI, vol. 14(2), pages 1-22, January.
    3. Jinzhu Hu & Manchao He & Jiong Wang & Zimin Ma & Yajun Wang & Xingyu Zhang, 2019. "Key Parameters of Roof Cutting of Gob-Side Entry Retaining in a Deep Inclined Thick Coal Seam with Hard Roof," Energies, MDPI, vol. 12(5), pages 1-19, March.
    4. Shengrong Xie & Yiyi Wu & Fangfang Guo & Hang Zou & Dongdong Chen & Xiao Zhang & Xiang Ma & Ruipeng Liu & Chaowen Wu, 2022. "Application of Pre-Splitting and Roof-Cutting Control Technology in Coal Mining: A Review of Technology," Energies, MDPI, vol. 15(17), pages 1-20, September.
    5. Jun Yang & Hongyu Wang & Yajun Wang & Binhui Liu & Shilin Hou & Yu Cheng, 2019. "Stability Analysis of the Entry in a New Mining Approach Influenced by Roof Fracture Position," Sustainability, MDPI, vol. 11(22), pages 1-16, November.
    6. Xinshuai Shi & Hongwen Jing & Zhenlong Zhao & Yuan Gao & Yuanchao Zhang & Ruodi Bu, 2020. "Physical Experiment and Numerical Modeling on the Failure Mechanism of Gob-Side Entry Driven in Thick Coal Seam," Energies, MDPI, vol. 13(20), pages 1-24, October.
    7. Xingyu Zhang & Liang Chen & Yubing Gao & Jinzhu Hu & Jun Yang & Manchao He, 2019. "Study of An Innovative Approach of Roof Presplitting for Gob-Side Entry Retaining in Longwall Coal Mining," Energies, MDPI, vol. 12(17), pages 1-16, August.
    8. Xuming Zhou & Haotian Li & Xuelong Li & Jianwei Wang & Jingjing Meng & Mingze Li & Chengwei Mei, 2022. "Research on Gob-Side Entry Retaining Mining of Fully Mechanized Working Face in Steeply Inclined Coal Seam: A Case in Xinqiang Coal Mine," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
    9. Zhibiao Guo & Haohao Wang & Zimin Ma & Pengfei Wang & Xiaohui Kuai & Xianzhe Zhang, 2021. "Research on the Transmission of Stresses by Roof Cutting near Gob Rocks," Energies, MDPI, vol. 14(5), pages 1-24, February.
    10. Zimin Ma & Jiong Wang & Manchao He & Yubing Gao & Jinzhu Hu & Qiong Wang, 2018. "Key Technologies and Application Test of an Innovative Noncoal Pillar Mining Approach: A Case Study," Energies, MDPI, vol. 11(10), pages 1-22, October.
    11. Xingen Ma & Manchao He & Jiong Wang & Yubing Gao & Daoyong Zhu & Yuxing Liu, 2018. "Mine Strata Pressure Characteristics and Mechanisms in Gob-Side Entry Retention by Roof Cutting under Medium-Thick Coal Seam and Compound Roof Conditions," Energies, MDPI, vol. 11(10), pages 1-25, September.
    12. Shixing Cheng & Zhanguo Ma & Peng Gong & Kelong Li & Ning Li & Tuo Wang, 2020. "Controlling the Deformation of a Small Coal Pillar Retaining Roadway by Non-Penetrating Directional Pre-Splitting Blasting with a Deep Hole: A Case Study in Wangzhuang Coal Mine," Energies, MDPI, vol. 13(12), pages 1-23, June.
    13. Yongkang Yang & Peipeng Gao & Chao Zhang & Chenlong Wang, 2023. "Numerical Investigation of the Influence of Roof-Cutting Parameters on the Stability of Top Coal Gob-Side Entry Retaining by Roof Pre-Fracturing in Ultra-Thick Coal Seam," Energies, MDPI, vol. 16(12), pages 1-20, June.
    14. Qiong Wang & Zhibiao Guo & Chun Zhu & Songyang Yin & Dawei Yin, 2021. "The Deformation Characteristics and Lateral Stress of Roadside Crushed Rocks with Different Particles in Non-Pillar Coal Mining," Energies, MDPI, vol. 14(13), pages 1-14, June.
    15. Wenlong Shen & Meng Wang & Zhengzheng Cao & Faqiang Su & Hua Nan & Xuelong Li, 2019. "Mining-Induced Failure Criteria of Interactional Hard Roof Structures: A Case Study," Energies, MDPI, vol. 12(15), pages 1-17, August.
    16. Bo Wang & Sitao Zhu & Fuxing Jiang & Jinhai Liu & Xiaoguang Shang & Xiufeng Zhang, 2020. "Investigating the Width of Isolated Coal Pillars in Deep Hard-Strata Mines for Prevention of Mine Seismicity and Rockburst," Energies, MDPI, vol. 13(17), pages 1-18, August.
    17. Xiaojie Yang & Eryu Wang & Xingen Ma & Guofeng Zhang & Ruifeng Huang & Haopeng Lou, 2019. "A Case Study on Optimization and Control Techniques for Entry Stability in Non-Pillar Longwall Mining," Energies, MDPI, vol. 12(3), pages 1-17, January.
    18. Dong Wang & Yujing Jiang & Xiaoming Sun & Hengjie Luan & Hui Zhang, 2019. "Nonlinear Large Deformation Mechanism and Stability Control of Deep Soft Rock Roadway: A Case Study in China," Sustainability, MDPI, vol. 11(22), pages 1-20, November.
    19. Krzysztof Skrzypkowski & Waldemar Korzeniowski & Krzysztof Zagórski & Anna Zagórska, 2020. "Modified Rock Bolt Support for Mining Method with Controlled Roof Bending," Energies, MDPI, vol. 13(8), pages 1-20, April.
    20. Hengzhong Zhu & Huajun Wang, 2023. "Ground Response of Non-Coal Pillar Mining Panel," Sustainability, MDPI, vol. 15(4), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4161-:d:832400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.