IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v225y2021ics0360544221003765.html
   My bibliography  Save this article

Fractal characteristics of methane migration channels in inclined coal seams

Author

Listed:
  • Zhao, Pengxiang
  • Zhuo, Risheng
  • Li, Shugang
  • Shu, Chi-Min
  • Jia, Yongyong
  • Lin, Haifei
  • Chang, Zechen
  • Ho, Chun-Hsing
  • Laiwang, Bin
  • Xiao, Peng

Abstract

Methane safety extraction is an effective method for reducing methane concentration in the gob and enhanced coal-bed methane recovery that is widely used in China. Although there is already extensive research on this technique, dip angle coal of seams has unpredictable effects on methane extraction locations, which is an influential factor that has rarely been studied, especially where the seam dip angles are larger. The benefits of this paper include improving methane extraction techniques, exploring the fractal characteristic of channel, and developing the laws governing how channels emerge, especially where coal seam dip angles vary. The results show that with increased coal seam dip angle, the height and width of channels show an increasing trend, along with crack angle. Key parameters of the methane migration channel boundaries in mutant regions of the bed separated under inclined coal mines were also defined. In the laboratory, an effective model was put forward to calculate the evolution characteristics of channels under inclined coal mining using fractal and elliptic paraboloid zone theory (EPZ); the finding was that the height of the A region at 30° was 1.34 and 2.00 times that of 15°, 0°, respectively. Moreover, borehole methane extraction concentration in area B increased to 6.04% in field application. The research results are expected to benefit industry and mine safety staff when arranging the position of high-level boreholes. The findings can enhance safety levels and improve efficiency in inclined coal mining.

Suggested Citation

  • Zhao, Pengxiang & Zhuo, Risheng & Li, Shugang & Shu, Chi-Min & Jia, Yongyong & Lin, Haifei & Chang, Zechen & Ho, Chun-Hsing & Laiwang, Bin & Xiao, Peng, 2021. "Fractal characteristics of methane migration channels in inclined coal seams," Energy, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:energy:v:225:y:2021:i:c:s0360544221003765
    DOI: 10.1016/j.energy.2021.120127
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221003765
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120127?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cai, Jianchao & Zhang, Zhien & Wei, Wei & Guo, Dongming & Li, Shuai & Zhao, Peiqiang, 2019. "The critical factors for permeability-formation factor relation in reservoir rocks: Pore-throat ratio, tortuosity and connectivity," Energy, Elsevier, vol. 188(C).
    2. Xu, Jiuping & Gao, Wen & Xie, Heping & Dai, Jingqi & Lv, Chengwei & Li, Meihui, 2018. "Integrated tech-paradigm based innovative approach towards ecological coal mining," Energy, Elsevier, vol. 151(C), pages 297-308.
    3. Ur Rahman, Zia & Iqbal Khattak, Shoukat & Ahmad, Manzoor & Khan, Anwar, 2020. "A disaggregated-level analysis of the relationship among energy production, energy consumption and economic growth: Evidence from China," Energy, Elsevier, vol. 194(C).
    4. Di Gao & Meng Li & Baoyu Wang & Bin Hu & Jianguo Liu, 2017. "Characteristics of Pore Structure and Fractal Dimension of Isometamorphic Anthracite," Energies, MDPI, vol. 10(11), pages 1-11, November.
    5. Jinzhu Hu & Manchao He & Jiong Wang & Zimin Ma & Yajun Wang & Xingyu Zhang, 2019. "Key Parameters of Roof Cutting of Gob-Side Entry Retaining in a Deep Inclined Thick Coal Seam with Hard Roof," Energies, MDPI, vol. 12(5), pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peiyun Xu & Shugang Li & Haifei Lin & Yang Ding & Haiqing Shuang & Sibo Liu & Yu Tian, 2021. "Fractal Characterization of Pressure-Relief Gas Permeability Evolution in a Mining Fracture Network," Energies, MDPI, vol. 14(21), pages 1-21, October.
    2. Boris V. Malozyomov & Vladimir Ivanovich Golik & Vladimir Brigida & Vladislav V. Kukartsev & Yadviga A. Tynchenko & Andrey A. Boyko & Sergey V. Tynchenko, 2023. "Substantiation of Drilling Parameters for Undermined Drainage Boreholes for Increasing Methane Production from Unconventional Coal-Gas Collectors," Energies, MDPI, vol. 16(11), pages 1-16, May.
    3. Bao Shi & Pengfei Wang, 2023. "Research on Stability Control of Shields at Working Face with Large Dip Angle," Energies, MDPI, vol. 16(15), pages 1-19, August.
    4. Fan Zhang & Guangsen Wang & Binbin Wang, 2023. "Study and Application of High-Level Directional Extraction Borehole Based on Mining Fracture Evolution Law of Overburden Strata," Sustainability, MDPI, vol. 15(3), pages 1-15, February.
    5. Zhao, Pengxiang & Zhuo, Risheng & Li, Shugang & Lin, Haifei & Shu, Chi-Min & Shuang, Haiqing & Wei, Zongyong, 2023. "Greenhouse gas protection and control based upon the evolution of overburden fractures under coal mining: A review of methods, influencing factors, and techniques," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magazzino, Cosimo & Mele, Marco & Schneider, Nicolas, 2021. "A D2C algorithm on the natural gas consumption and economic growth: Challenges faced by Germany and Japan," Energy, Elsevier, vol. 219(C).
    2. Wang, Zhibao & Zhao, Nana & Wei, Wendong & Zhang, Qianwen, 2021. "A differentiated energy Kuznets curve: Evidence from mainland China," Energy, Elsevier, vol. 214(C).
    3. Veronika Varvařovská & Michaela Staňková, 2021. "Does the Involvement of "Green Energy" Increase the Productivity of Companies in the Production of the Electricity Sector?," European Journal of Business Science and Technology, Mendel University in Brno, Faculty of Business and Economics, vol. 7(2), pages 152-164.
    4. Zhao, Jingyu & Deng, Jun & Wang, Tao & Song, Jiajia & Zhang, Yanni & Shu, Chi-Min & Zeng, Qiang, 2019. "Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidatio," Energy, Elsevier, vol. 169(C), pages 587-596.
    5. Daiva Makutėnienė & Algirdas Justinas Staugaitis & Bernardas Vaznonis & Gunta Grīnberga-Zālīte, 2023. "The Relationship between Energy Consumption and Economic Growth in the Baltic Countries’ Agriculture: A Non-Linear Framework," Energies, MDPI, vol. 16(5), pages 1-22, February.
    6. Zhenjian Liu & Zhenyu Zhang & Sing Ki Choi & Yiyu Lu, 2018. "Surface Properties and Pore Structure of Anthracite, Bituminous Coal and Lignite," Energies, MDPI, vol. 11(6), pages 1-14, June.
    7. Xiaoyu Liu & Manchao He & Jiong Wang & Zimin Ma, 2021. "Research on Non-Pillar Coal Mining for Thick and Hard Conglomerate Roof," Energies, MDPI, vol. 14(2), pages 1-14, January.
    8. Shengrong Xie & Yiyi Wu & Fangfang Guo & Hang Zou & Dongdong Chen & Xiao Zhang & Xiang Ma & Ruipeng Liu & Chaowen Wu, 2022. "Application of Pre-Splitting and Roof-Cutting Control Technology in Coal Mining: A Review of Technology," Energies, MDPI, vol. 15(17), pages 1-20, September.
    9. Marta Daroń & Marlena Wilk, 2021. "Management of Energy Sources and the Development Potential in the Energy Production Sector—A Comparison of EU Countries," Energies, MDPI, vol. 14(3), pages 1-12, January.
    10. Wang, Xiaoxuan & Gao, Xiangyun & Wu, Tao & Sun, Xiaotian, 2022. "Dynamic multiscale analysis of causality among mining stock prices," Resources Policy, Elsevier, vol. 77(C).
    11. Liang, Chao & Goodell, John W. & Li, Xiafei, 2024. "Impacts of carbon market and climate policy uncertainties on financial and economic stability: Evidence from connectedness network analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 92(C).
    12. Peizhong Lu & Yuxuan Huang & Peng Jin & Shouguo Yang & Man Wang & Xiaochuan Wang, 2023. "Optimization of a Marker Gas for Analyzing and Predicting the Spontaneous Combustion Period of Coking Coal," Energies, MDPI, vol. 16(23), pages 1-19, November.
    13. Kaiyuan Zheng & Ying Zhang, 2023. "Prediction and Urban Adaptivity Evaluation Model Based on Carbon Emissions: A Case Study of Six Coastal City Clusters in China," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    14. Li, Yiming & Solaymani, Saeed, 2021. "Energy consumption, technology innovation and economic growth nexuses in Malaysian," Energy, Elsevier, vol. 232(C).
    15. Xinshuai Shi & Hongwen Jing & Zhenlong Zhao & Yuan Gao & Yuanchao Zhang & Ruodi Bu, 2020. "Physical Experiment and Numerical Modeling on the Failure Mechanism of Gob-Side Entry Driven in Thick Coal Seam," Energies, MDPI, vol. 13(20), pages 1-24, October.
    16. Zhang, Hongsheng & Xiong, Peizhi & Yang, Shangzhao & Yu, Jinna, 2023. "Renewable energy utilization, green finance and agricultural land expansion in China," Resources Policy, Elsevier, vol. 80(C).
    17. Zheng, Jiali & Feng, Gengzhong & Ren, Zhuanzhuan & Qi, Nengxi & Coffman, D'Maris & Zhou, Yunlai & Wang, Shouyang, 2022. "China's energy consumption and economic activity at the regional level," Energy, Elsevier, vol. 259(C).
    18. Zou, Xiaojing & He, Changyu & Guan, Wei & Zhou, Yan & Zhao, Hongyang & Cai, Mingyu, 2023. "Reservoir tortuosity prediction: Coupling stochastic generation of porous media and machine learning," Energy, Elsevier, vol. 285(C).
    19. S. Nyasha & N.M. Odhiambo, 2022. "Energy consumption and economic growth in Zambia: A disaggregated approach," Journal of Economic Policy and Management Issues, JEPMI, vol. 1(1), pages 1-11.
    20. Zhenqian Ma & Dongyue Zhang & Yunqin Cao & Wei Yang & Biao Xu, 2022. "Study of Key Technology of Gob-Side Entry Retention in a High Gas Outburst Coal Seam in the Karst Mountain Area," Energies, MDPI, vol. 15(11), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:225:y:2021:i:c:s0360544221003765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.