IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i12p3248-d375220.html
   My bibliography  Save this article

Assessing the Environmental Performance of Palm Oil Biodiesel Production in Indonesia: A Life Cycle Assessment Approach

Author

Listed:
  • Yoyon Wahyono

    (Graduate Program of Environmental Science, School of Postgraduate Studies, Diponegoro University, Jawa Tengah 50241, Indonesia)

  • Hadiyanto Hadiyanto

    (Graduate Program of Environmental Science, School of Postgraduate Studies, Diponegoro University, Jawa Tengah 50241, Indonesia)

  • Mochamad Arief Budihardjo

    (Graduate Program of Environmental Science, School of Postgraduate Studies, Diponegoro University, Jawa Tengah 50241, Indonesia)

  • Joni Safaat Adiansyah

    (Mining Engineering Department, Faculty of Engineering, Muhammadiyah University of Mataram, Nusa Tenggara Barat 83115, Indonesia)

Abstract

The production of palm oil biodiesel in Indonesia has the potential to negatively impact the environment if not managed properly. Therefore, we conducted a life cycle assessment (LCA) study on the production of palm oil biodiesel to assess the environmental performance in Indonesia. Using an LCA approach, we analyzed the environmental indicators, including the carbon footprint, as well as the harm to human health, ecosystem diversity, and resource availability in palm oil biodiesel production. The functional unit in this study was 1 ton of biodiesel. The life cycle of palm oil biodiesel production consists of three processing units, namely the oil palm plantation, palm oil production, and biodiesel production. The processing unit with the greatest impact on the environment was found to be the oil palm plantation. The environmental benefits, namely the use of phosphate, contributed 62.30% of the 73.40% environmental benefit of the CO 2 uptake from the oil palm plantation processing unit. The total human health damage of the life cycle of palm oil biodiesel production was 0.00563 DALY, while the total ecosystem’s diversity damage was 2.69 × 10 −5 species·yr. Finally, we concluded that the oil palm plantation processing unit was the primary contributor of the carbon footprint, human health damage, and ecosystem diversity damage, while the biodiesel production processing unit demonstrated the highest damage to resource availability.

Suggested Citation

  • Yoyon Wahyono & Hadiyanto Hadiyanto & Mochamad Arief Budihardjo & Joni Safaat Adiansyah, 2020. "Assessing the Environmental Performance of Palm Oil Biodiesel Production in Indonesia: A Life Cycle Assessment Approach," Energies, MDPI, vol. 13(12), pages 1-25, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3248-:d:375220
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/12/3248/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/12/3248/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. Germer & J. Sauerborn, 2008. "Estimation of the impact of oil palm plantation establishment on greenhouse gas balance," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 10(6), pages 697-716, December.
    2. Papong, Seksan & Chom-In, Tassaneewan & Noksa-nga, Soottiwan & Malakul, Pomthong, 2010. "Life cycle energy efficiency and potentials of biodiesel production from palm oil in Thailand," Energy Policy, Elsevier, vol. 38(1), pages 226-233, January.
    3. Silalertruksa, Thapat & Gheewala, Shabbir H., 2012. "Environmental sustainability assessment of palm biodiesel production in Thailand," Energy, Elsevier, vol. 43(1), pages 306-314.
    4. de Souza, Simone Pereira & Pacca, Sergio & de Ávila, Márcio Turra & Borges, José Luiz B., 2010. "Greenhouse gas emissions and energy balance of palm oil biofuel," Renewable Energy, Elsevier, vol. 35(11), pages 2552-2561.
    5. Rodrigues, Thiago Oliveira & Caldeira-Pires, Armando & Luz, Sandra & Frate, Claudio Albuquerque, 2014. "GHG balance of crude palm oil for biodiesel production in the northern region of Brazil," Renewable Energy, Elsevier, vol. 62(C), pages 516-521.
    6. Castanheira, Érica Geraldes & Acevedo, Helmer & Freire, Fausto, 2014. "Greenhouse gas intensity of palm oil produced in Colombia addressing alternative land use change and fertilization scenarios," Applied Energy, Elsevier, vol. 114(C), pages 958-967.
    7. Hassan, Mohd Nor Azman & Jaramillo, Paulina & Griffin, W. Michael, 2011. "Life cycle GHG emissions from Malaysian oil palm bioenergy development: The impact on transportation sector's energy security," Energy Policy, Elsevier, vol. 39(5), pages 2615-2625, May.
    8. Patthanaissaranukool, Withida & Polprasert, Chongchin & Englande, Andrew J., 2013. "Potential reduction of carbon emissions from Crude Palm Oil production based on energy and carbon balances," Applied Energy, Elsevier, vol. 102(C), pages 710-717.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Phuang, Zhen Xin & Woon, Kok Sin & Wong, Khai Jian & Liew, Peng Yen & Hanafiah, Marlia Mohd, 2021. "Unlocking the environmental hotspots of palm biodiesel upstream production in Malaysia via life cycle assessment," Energy, Elsevier, vol. 232(C).
    2. Iman K. Reksowardojo & Hari Setiapraja & Rizqon Fajar & Edi Wibowo & Dadan Kusdiana, 2020. "An Investigation of Laboratory and Road Test of Common Rail Injection Vehicles Fueled with B20 Biodiesel," Energies, MDPI, vol. 13(22), pages 1-15, November.
    3. Nabila, Rakhmawati & Hidayat, Wahyu & Haryanto, Agus & Hasanudin, Udin & Iryani, Dewi Agustina & Lee, Sihyun & Kim, Sangdo & Kim, Soohyun & Chun, Donghyuk & Choi, Hokyung & Im, Hyuk & Lim, Jeonghwan &, 2023. "Oil palm biomass in Indonesia: Thermochemical upgrading and its utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Archer, Sophie A. & Murphy, Richard J. & Steinberger-Wilckens, Robert, 2018. "Methodological analysis of palm oil biodiesel life cycle studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 694-704.
    2. Castanheira, Érica Geraldes & Acevedo, Helmer & Freire, Fausto, 2014. "Greenhouse gas intensity of palm oil produced in Colombia addressing alternative land use change and fertilization scenarios," Applied Energy, Elsevier, vol. 114(C), pages 958-967.
    3. Polprasert, Chongchin & Patthanaissaranukool, Withida & Englande, Andrew J., 2015. "A choice between RBD (refined, bleached, and deodorized) palm olein and palm methyl ester productions from carbon movement categorization," Energy, Elsevier, vol. 88(C), pages 610-620.
    4. Charlotte Stead & Zia Wadud & Chris Nash & Hu Li, 2019. "Introduction of Biodiesel to Rail Transport: Lessons from the Road Sector," Sustainability, MDPI, vol. 11(3), pages 1-20, February.
    5. Uusitalo, V. & Väisänen, S. & Havukainen, J. & Havukainen, M. & Soukka, R. & Luoranen, M., 2014. "Carbon footprint of renewable diesel from palm oil, jatropha oil and rapeseed oil," Renewable Energy, Elsevier, vol. 69(C), pages 103-113.
    6. Xu, H. & Lee, U. & Wang, M., 2020. "Life-cycle energy use and greenhouse gas emissions of palm fatty acid distillate derived renewable diesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    7. Wiraditma Prananta & Ida Kubiszewski, 2021. "Assessment of Indonesia’s Future Renewable Energy Plan: A Meta-Analysis of Biofuel Energy Return on Investment (EROI)," Energies, MDPI, vol. 14(10), pages 1-15, May.
    8. Gan, Peck Yean & Li, Zhi Dong, 2014. "Econometric study on Malaysia׳s palm oil position in the world market to 2035," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 740-747.
    9. Avinash, A. & Subramaniam, D. & Murugesan, A., 2014. "Bio-diesel—A global scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 517-527.
    10. Patthanaissaranukool, Withida & Polprasert, Chongchin & Englande, Andrew J., 2013. "Potential reduction of carbon emissions from Crude Palm Oil production based on energy and carbon balances," Applied Energy, Elsevier, vol. 102(C), pages 710-717.
    11. Rodrigues, Thiago Oliveira & Caldeira-Pires, Armando & Luz, Sandra & Frate, Claudio Albuquerque, 2014. "GHG balance of crude palm oil for biodiesel production in the northern region of Brazil," Renewable Energy, Elsevier, vol. 62(C), pages 516-521.
    12. Gourich, Wail & Chan, Eng-Seng & Ng, Wei Zhe & Obon, Aaron Anthony & Maran, Kireshwen & Ong, Yi Hui & Lee, Chin Loong & Tan, Jully & Song, Cher Pin, 2022. "Life cycle benefits of enzymatic biodiesel co-produced in palm oil mills from sludge palm oil as renewable fuel for rural electrification," Applied Energy, Elsevier, vol. 325(C).
    13. Cho, Hyun Jun & Kim, Jin-Kuk & Ahmed, Faisal & Yeo, Yeong-Koo, 2013. "Life-cycle greenhouse gas emissions and energy balances of a biodiesel production from palm fatty acid distillate (PFAD)," Applied Energy, Elsevier, vol. 111(C), pages 479-488.
    14. Iriarte, Alfredo & Rieradevall, Joan & Gabarrell, Xavier, 2012. "Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile," Applied Energy, Elsevier, vol. 91(1), pages 263-273.
    15. Jensen, Henning Tarp & Keogh-Brown, Marcus R. & Shankar, Bhavani & Aekplakorn, Wichai & Basu, Sanjay & Cuevas, Soledad & Dangour, Alan D. & Gheewala, Shabbir H. & Green, Rosemary & Joy, Edward J.M. & , 2019. "Palm oil and dietary change: Application of an integrated macroeconomic, environmental, demographic, and health modelling framework for Thailand," Food Policy, Elsevier, vol. 83(C), pages 92-103.
    16. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    17. Abdul-Manan, Amir F.N., 2017. "Lifecycle GHG emissions of palm biodiesel: Unintended market effects negate direct benefits of the Malaysian Economic Transformation Plan (ETP)," Energy Policy, Elsevier, vol. 104(C), pages 56-65.
    18. Mediavilla, Margarita & de Castro, Carlos & Capellán, Iñigo & Javier Miguel, Luis & Arto, Iñaki & Frechoso, Fernando, 2013. "The transition towards renewable energies: Physical limits and temporal conditions," Energy Policy, Elsevier, vol. 52(C), pages 297-311.
    19. Alicia Vanessa Jeffary & Osumanu Haruna Ahmed & Roland Kueh Jui Heng & Liza Nuriati Lim Kim Choo & Latifah Omar & Adiza Alhassan Musah & Arifin Abdu, 2021. "Nitrous Oxide Emissions in Pineapple Cultivation on a Tropical Peat Soil," Sustainability, MDPI, vol. 13(9), pages 1-14, April.
    20. Asante, Dennis & He, Zheng & Adjei, Nana Osae & Asante, Bismark, 2020. "Exploring the barriers to renewable energy adoption utilising MULTIMOORA- EDAS method," Energy Policy, Elsevier, vol. 142(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3248-:d:375220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.