IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i14p2697-d248417.html
   My bibliography  Save this article

An Experimental and Numerical Case Study of Passive Building Cooling with Foundation Pile Heat Exchangers in Denmark

Author

Listed:
  • Søren Erbs Poulsen

    (R&D Center for Building, Energy, Water and Climate, VIA University College, DK-8700 Horsens, Denmark)

  • Maria Alberdi-Pagola

    (Centrum Pæle A/S, Grønlandsvej 96, DK-7100 Vejle, Denmark)

  • Davide Cerra

    (Department of Civil Engineering and Architecture, University of Pavia, 27100 Pavia, Italy)

  • Anna Magrini

    (Department of Civil Engineering and Architecture, University of Pavia, 27100 Pavia, Italy)

Abstract

Technologies for energy-efficient cooling of buildings are in high demand due to the heavy CO 2 footprint of traditional air conditioning methods. The ground source heat pump system (GSHP) installed at the Rosborg Gymnasium in Vejle (Denmark) uses foundation pile heat exchangers (energy piles). Although designed for passive cooling, the GSHP is used exclusively for heating. In a five-week test during the summer of 2018, excess building heat was rejected passively to the energy piles and the ground. Measured energy efficiency ratios are 24–36 and the thermal comfort in conditioned rooms is improved significantly relative to unconditioned reference rooms. A simple model relating the available cooling power to conditioned room and ground temperatures is developed and calibrated to measured test data. Building energy simulation based estimates of the total cooling demand of the building are then compared to corresponding model calculations of the available cooling capacity. The comparison shows that passive cooling is able to meet the cooling demand of Rosborg Gymnasium except for 7–17 h per year, given that room temperatures are constrained to < 26 °C. The case study clearly demonstrates the potential for increasing thermal comfort during summer with highly efficient passive cooling by rejecting excess building heat to the ground.

Suggested Citation

  • Søren Erbs Poulsen & Maria Alberdi-Pagola & Davide Cerra & Anna Magrini, 2019. "An Experimental and Numerical Case Study of Passive Building Cooling with Foundation Pile Heat Exchangers in Denmark," Energies, MDPI, vol. 12(14), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2697-:d:248417
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/14/2697/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/14/2697/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alberdi-Pagola, Maria & Poulsen, Søren Erbs & Loveridge, Fleur & Madsen, Søren & Jensen, Rasmus Lund, 2018. "Comparing heat flow models for interpretation of precast quadratic pile heat exchanger thermal response tests," Energy, Elsevier, vol. 145(C), pages 721-733.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomasz Sliwa & Aneta Sapińska-Śliwa & Tomasz Wysogląd & Tomasz Kowalski & Izabela Konopka, 2021. "Strength Tests of Hardened Cement Slurries for Energy Piles, with the Addition of Graphite and Graphene, in Terms of Increasing the Heat Transfer Efficiency," Energies, MDPI, vol. 14(4), pages 1-20, February.
    2. Natalia Fidorów-Kaprawy & Łukasz Stefaniak, 2022. "Potential of CO 2 Emission Reduction via Application of Geothermal Heat Exchanger and Passive Cooling in Residential Sector under Polish Climatic Conditions," Energies, MDPI, vol. 15(22), pages 1-15, November.
    3. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Danielle Pinette & Roberto-Alonso Gonzalez-Lezcano & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2020. "Application and Validation of a Dynamic Energy Simulation Tool: A Case Study with Water Flow Glazing Envelope," Energies, MDPI, vol. 13(12), pages 1-20, June.
    4. Søren Erbs Poulsen & Theis Raaschou Andersen & Karl Woldum Tordrup, 2022. "Full-Scale Demonstration of Combined Ground Source Heating and Sustainable Urban Drainage in Roadbeds," Energies, MDPI, vol. 15(12), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charles Maragna & Fleur Loveridge, 2021. "A New Approach for Characterizing Pile Heat Exchangers Using Thermal Response Tests," Energies, MDPI, vol. 14(12), pages 1-18, June.
    2. Alberdi-Pagola, Maria & Poulsen, Søren Erbs & Jensen, Rasmus Lund & Madsen, Søren, 2020. "A case study of the sizing and optimisation of an energy pile foundation (Rosborg, Denmark)," Renewable Energy, Elsevier, vol. 147(P2), pages 2724-2735.
    3. Aresti, Lazaros & Alvi, Maria Romana & Cecinato, Francesco & Fan, Tao & Halaj, Elzbieta & Li, Zili & Okhay, Olena & Poulsen, Soren Erbs & Quiroga, Sonia & Suarez, Cristina & Tang, Anh Minh & Valancius, 2024. "Energy geo-structures: A review of their integration with other sources and its limitations," Renewable Energy, Elsevier, vol. 230(C).
    4. Linden Jensen-Page & Fleur Loveridge & Guillermo A. Narsilio, 2019. "Thermal Response Testing of Large Diameter Energy Piles," Energies, MDPI, vol. 12(14), pages 1-25, July.
    5. Faizal, Mohammed & Bouazza, Abdelmalek & McCartney, John S., 2022. "Thermal resistance analysis of an energy pile and adjacent soil using radial temperature gradients," Renewable Energy, Elsevier, vol. 190(C), pages 1066-1077.
    6. Bi, Yuehong & Lyu, Tianli & Wang, Hongyan & Sun, Ruirui & Yu, Meize, 2019. "Parameter analysis of single U-tube GHE and dynamic simulation of underground temperature field round one year for GSHP," Energy, Elsevier, vol. 174(C), pages 138-147.
    7. Cardoso de Freitas Murari, Milena & de Hollanda Cavalcanti Tsuha, Cristina & Loveridge, Fleur, 2022. "Investigation on the thermal response of steel pipe energy piles with different backfill materials," Renewable Energy, Elsevier, vol. 199(C), pages 44-61.
    8. Kong, Gangqiang & Dai, Guohao & Zhou, Yang & Yang, Qing, 2024. "Analytical solution model of heat transfer for energy soldier piles during excavation to backfilling," Renewable Energy, Elsevier, vol. 226(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2697-:d:248417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.