IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i12p3092-d371878.html
   My bibliography  Save this article

Optimal Dimensions of a Semisubmersible Floating Platform for a 10 MW Wind Turbine

Author

Listed:
  • Giulio Ferri

    (Department of Civil and Environmental Engineering, University of Florence, Via di S. Marta 3, 50139 Firenze, Italy)

  • Enzo Marino

    (Department of Civil and Environmental Engineering, University of Florence, Via di S. Marta 3, 50139 Firenze, Italy)

  • Claudio Borri

    (Department of Civil and Environmental Engineering, University of Florence, Via di S. Marta 3, 50139 Firenze, Italy)

Abstract

In this paper, an optimal semisubmersible platform is sought considering two key geometry variables: the diameter of the outer cylinders and their radial distance from the platform centre. The goal is to identify a platform configuration able to most efficiently contrast the combined wind-wave action, keeping the platform dimensions as small as possible. The amplitude of the Response Amplitude Operator (RAO) peaks and the integral area of the RAOs in a range of excited frequencies for the selected degrees of freedom are chosen as targets to be minimised. Through an efficient frequency domain simulation approach, we show that upscaling techniques proposed in the literature may lead to overdesigned platforms and that smaller and more performing platforms can be identified. In particular, the optimised platform shows a reduction of about 51% in parked and 54% in power production of the heave RAO peak, and a reduction of about 37% in parked and 50% in power production of the pitch RAO.

Suggested Citation

  • Giulio Ferri & Enzo Marino & Claudio Borri, 2020. "Optimal Dimensions of a Semisubmersible Floating Platform for a 10 MW Wind Turbine," Energies, MDPI, vol. 13(12), pages 1-20, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3092-:d:371878
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/12/3092/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/12/3092/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marino, Enzo & Giusti, Alessandro & Manuel, Lance, 2017. "Offshore wind turbine fatigue loads: The influence of alternative wave modeling for different turbulent and mean winds," Renewable Energy, Elsevier, vol. 102(PA), pages 157-169.
    2. Tomasicchio, Giuseppe Roberto & D'Alessandro, Felice & Avossa, Alberto Maria & Riefolo, Luigia & Musci, Elena & Ricciardelli, Francesco & Vicinanza, Diego, 2018. "Experimental modelling of the dynamic behaviour of a spar buoy wind turbine," Renewable Energy, Elsevier, vol. 127(C), pages 412-432.
    3. Jeon, Minu & Lee, Seungmin & Lee, Soogab, 2014. "Unsteady aerodynamics of offshore floating wind turbines in platform pitching motion using vortex lattice method," Renewable Energy, Elsevier, vol. 65(C), pages 207-212.
    4. Agota Mockutė & Enzo Marino & Claudio Lugni & Claudio Borri, 2019. "Comparison of Nonlinear Wave-Loading Models on Rigid Cylinders in Regular Waves," Energies, MDPI, vol. 12(21), pages 1-22, October.
    5. Fang, Yuan & Duan, Lei & Han, Zhaolong & Zhao, Yongsheng & Yang, He, 2020. "Numerical analysis of aerodynamic performance of a floating offshore wind turbine under pitch motion," Energy, Elsevier, vol. 192(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Papi, F. & Bianchini, A., 2022. "Technical challenges in floating offshore wind turbine upscaling: A critical analysis based on the NREL 5 MW and IEA 15 MW Reference Turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Li, Wei & Wang, Shuaishuai & Moan, Torgeir & Gao, Zhen & Gao, Shan, 2024. "Global design methodology for semi-submersible hulls of floating wind turbines," Renewable Energy, Elsevier, vol. 225(C).
    3. Ferri, Giulio & Marino, Enzo, 2023. "Site-specific optimizations of a 10 MW floating offshore wind turbine for the Mediterranean Sea," Renewable Energy, Elsevier, vol. 202(C), pages 921-941.
    4. Weimin Chen & Shuangxi Guo & Yilun Li & Yijun Shen, 2021. "Impacts of Mooring-Lines Hysteresis on Dynamic Response of Spar Floating Wind Turbine," Energies, MDPI, vol. 14(8), pages 1-13, April.
    5. Niccolo Bruschi & Giulio Ferri & Enzo Marino & Claudio Borri, 2020. "Influence of Clumps-Weighted Moorings on a Spar Buoy Offshore Wind Turbine," Energies, MDPI, vol. 13(23), pages 1-14, December.
    6. Ferri, Giulio & Marino, Enzo & Bruschi, Niccolò & Borri, Claudio, 2022. "Platform and mooring system optimization of a 10 MW semisubmersible offshore wind turbine," Renewable Energy, Elsevier, vol. 182(C), pages 1152-1170.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Haoda & Liu, Qingsong & Yue, Minnan & Miao, Weipao & Wang, Peilin & Li, Chun, 2023. "Fully coupled aero-hydrodynamic analysis of a biomimetic fractal semi-submersible floating offshore wind turbine under wind-wave excitation conditions," Renewable Energy, Elsevier, vol. 203(C), pages 280-300.
    2. Wang, Xinbao & Cai, Chang & Cai, Shang-Gui & Wang, Tengyuan & Wang, Zekun & Song, Juanjuan & Rong, Xiaomin & Li, Qing'an, 2023. "A review of aerodynamic and wake characteristics of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    3. Rezaeiha, Abdolrahim & Micallef, Daniel, 2021. "Wake interactions of two tandem floating offshore wind turbines: CFD analysis using actuator disc model," Renewable Energy, Elsevier, vol. 179(C), pages 859-876.
    4. Wang, Xinbao & Cai, Chang & Wu, Xianyou & Chen, Yewen & Wang, Tengyuan & Zhong, Xiaohui & Li, Qing'an, 2024. "Numerical validation of the dynamic aerodynamic similarity criterion for floating offshore wind turbines under equivalent pitch motions," Energy, Elsevier, vol. 294(C).
    5. Cai, Yefeng & Zhao, Haisheng & Li, Xin & Liu, Yuanchuan, 2023. "Aerodynamic analysis for different operating states of floating offshore wind turbine induced by pitching movement," Energy, Elsevier, vol. 285(C).
    6. Niccolo Bruschi & Giulio Ferri & Enzo Marino & Claudio Borri, 2020. "Influence of Clumps-Weighted Moorings on a Spar Buoy Offshore Wind Turbine," Energies, MDPI, vol. 13(23), pages 1-14, December.
    7. Ferri, Giulio & Marino, Enzo & Bruschi, Niccolò & Borri, Claudio, 2022. "Platform and mooring system optimization of a 10 MW semisubmersible offshore wind turbine," Renewable Energy, Elsevier, vol. 182(C), pages 1152-1170.
    8. Duan, Lei & Sun, Qinghong & He, Zanyang & Li, Gen, 2022. "Wake topology and energy recovery in floating horizontal-axis wind turbines with harmonic surge motion," Energy, Elsevier, vol. 260(C).
    9. Ferri, Giulio & Marino, Enzo, 2023. "Site-specific optimizations of a 10 MW floating offshore wind turbine for the Mediterranean Sea," Renewable Energy, Elsevier, vol. 202(C), pages 921-941.
    10. Micallef, Daniel & Rezaeiha, Abdolrahim, 2021. "Floating offshore wind turbine aerodynamics: Trends and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    11. Liang Lu & Minyan Zhu & Haijun Wu & Jianzhong Wu, 2022. "A Review and Case Analysis on Biaxial Synchronous Loading Technology and Fast Moment-Matching Methods for Fatigue Tests of Wind Turbine Blades," Energies, MDPI, vol. 15(13), pages 1-34, July.
    12. Zhou, Yang & Xiao, Qing & Liu, Yuanchuan & Incecik, Atilla & Peyrard, Christophe & Wan, Decheng & Pan, Guang & Li, Sunwei, 2022. "Exploring inflow wind condition on floating offshore wind turbine aerodynamic characterisation and platform motion prediction using blade resolved CFD simulation," Renewable Energy, Elsevier, vol. 182(C), pages 1060-1079.
    13. Zhu, Hongtao & Gao, Xueping & Liu, Yinzhu & Liu, Shuai, 2023. "Numerical and experimental assessment of the water discharge segment in a pumped-storage power station," Energy, Elsevier, vol. 265(C).
    14. Sara Russo & Pasquale Contestabile & Andrea Bardazzi & Elisa Leone & Gregorio Iglesias & Giuseppe R. Tomasicchio & Diego Vicinanza, 2021. "Dynamic Loads and Response of a Spar Buoy Wind Turbine with Pitch-Controlled Rotating Blades: An Experimental Study," Energies, MDPI, vol. 14(12), pages 1-21, June.
    15. Zhang, Dan & Wu, Zhenglong & Chen, Yaoran & Kuang, Limin & Peng, Yan & Zhou, Dai & Tu, Yu, 2024. "Full-scale vs. scaled aerodynamics of 5-MW offshore VAWTs under pitch motion: A numerical analysis," Applied Energy, Elsevier, vol. 372(C).
    16. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    17. Liu, Yuanchuan & Xiao, Qing & Incecik, Atilla & Peyrard, Christophe & Wan, Decheng, 2017. "Establishing a fully coupled CFD analysis tool for floating offshore wind turbines," Renewable Energy, Elsevier, vol. 112(C), pages 280-301.
    18. Rongyong Zhao & Daheng Dong & Cuiling Li & Steven Liu & Hao Zhang & Miyuan Li & Wenzhong Shen, 2020. "An Improved Power Control Approach for Wind Turbine Fatigue Balancing in an Offshore Wind Farm," Energies, MDPI, vol. 13(7), pages 1-20, March.
    19. Yang, Yang & Fu, Jianbin & Shi, Zhaobin & Ma, Lu & Yu, Jie & Fang, Fang & Chen, Shunhua & Lin, Zaibin & Li, Chun, 2023. "Performance and fatigue analysis of an integrated floating wind-current energy system considering the aero-hydro-servo-elastic coupling effects," Renewable Energy, Elsevier, vol. 216(C).
    20. Wen, Hao & Sang, Song & Qiu, Chenhui & Du, Xiangrui & Zhu, Xiao & Shi, Qian, 2019. "A new optimization method of wind turbine airfoil performance based on Bessel equation and GABP artificial neural network," Energy, Elsevier, vol. 187(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3092-:d:371878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.