IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2994-d369751.html
   My bibliography  Save this article

Universal Kinetic Model to Simulate Two-Step Biodiesel Production from Vegetable Oil

Author

Listed:
  • A. Alcantara

    (Department of Physical Chemistry and Applied Thermodynamics, EPS, Edificio Leonardo da Vinci, Campus de Rabanales, Universidad de Cordoba, Campus de Excelencia Internacional Agroalimentario ceiA3, 14071 Córdoba, Spain)

  • F. J. Lopez-Gimenez

    (Department of Rural Engineering, EPS, Edificio Leonardo da Vinci, Campus de Rabanales, Universidad de Cordoba, Campus de Excelencia Internacional Agroalimentario ceiA3, 14071 Córdoba, Spain)

  • M. P. Dorado

    (Department of Physical Chemistry and Applied Thermodynamics, EPS, Edificio Leonardo da Vinci, Campus de Rabanales, Universidad de Cordoba, Campus de Excelencia Internacional Agroalimentario ceiA3, 14071 Córdoba, Spain)

Abstract

To date, to simulate biodiesel production, kinetic models from different authors have been provided, each one usually applied to the use of a specific vegetable oil and experimental conditions. Models, which may include esterification, besides transesterification simulation, were validated with their own experimental conditions and raw material. Moreover, information about the intermediate reaction steps, besides catalyst concentration variation, is either rare or nonexistent. Here, in this work, a universal mathematical model comprising the chemical kinetics of a two-step (esterification and transesterification) vegetable oil-based biodiesel reaction is proposed. The proposed model is universal, as it may simulate any vegetable oil biodiesel reaction from the literature. For this purpose, a mathematical model using the software MATLAB has been designed. Using the mathematical model, the estimation of mass variation with time, of both reactants and products, as well as glyceride conversion and homogeneous catalyst concentration variation (instead of only alcohol/catalyst solution) are allowed. Moreover, analysis of the influence of some important variables affecting the reaction kinetics of biodiesel production (e.g., catalyst concentration), along with comparison and model validation with data from different authors may be carried out. In addition, Supplementary material with a collection of 290 rate constants, derived from 55 different experiments using different vegetable oils and conditions is provided.

Suggested Citation

  • A. Alcantara & F. J. Lopez-Gimenez & M. P. Dorado, 2020. "Universal Kinetic Model to Simulate Two-Step Biodiesel Production from Vegetable Oil," Energies, MDPI, vol. 13(11), pages 1-15, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2994-:d:369751
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2994/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2994/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hongshen Li & Shizhong Li, 2020. "Optimization of Continuous Solid-State Distillation Process for Cost-Effective Bioethanol Production," Energies, MDPI, vol. 13(4), pages 1-21, February.
    2. Filip, Ondrej & Janda, Karel & Kristoufek, Ladislav & Zilberman, David, 2019. "Food versus fuel: An updated and expanded evidence," Energy Economics, Elsevier, vol. 82(C), pages 152-166.
    3. Panchal, Balaji & Chang, Tao & Qin, Shenjun & Sun, Yuzhuang & Wang, Jinxi & Bian, Kai, 2020. "Optimization and kinetics of tung nut oil transesterification with methanol using novel solid acidic ionic liquid polymer as catalyst for methyl ester synthesis," Renewable Energy, Elsevier, vol. 151(C), pages 796-804.
    4. AlSharifi, Mariam & Znad, Hussein, 2019. "Development of a lithium based chicken bone (Li-Cb) composite as an efficient catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 136(C), pages 856-864.
    5. Dorado, M.P. & Cruz, F. & Palomar, J.M. & López, F.J., 2006. "An approach to the economics of two vegetable oil-based biofuels in Spain," Renewable Energy, Elsevier, vol. 31(8), pages 1231-1237.
    6. Nazira Mahmud & Kurt A. Rosentrater, 2020. "Techno-Economic Analysis (TEA) of Different Pretreatment and Product Separation Technologies for Cellulosic Butanol Production from Oil Palm Frond," Energies, MDPI, vol. 13(1), pages 1-26, January.
    7. Khairul Azly Zahan & Manabu Kano, 2018. "Biodiesel Production from Palm Oil, Its By-Products, and Mill Effluent: A Review," Energies, MDPI, vol. 11(8), pages 1-25, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silvia Zabala & Inés Reyero & Idoia Campo & Gurutze Arzamendi & Luis M. Gandía, 2021. "Pseudo-Homogeneous and Heterogeneous Kinetic Models of the NaOH-Catalyzed Methanolysis Reaction for Biodiesel Production," Energies, MDPI, vol. 14(14), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daabo, Ahmed M. & Saeed, Liqaa I. & Altamer, Marwa H. & Fadhil, Abdelrahman B. & Badawy, Tawfik, 2022. "The production of bio-based fuels and carbon catalysts from chicken waste," Renewable Energy, Elsevier, vol. 201(P1), pages 21-34.
    2. Zhuo Chen & Bo Yan & Hanwen Kang, 2022. "Dynamic correlation between crude oil and agricultural futures markets," Review of Development Economics, Wiley Blackwell, vol. 26(3), pages 1798-1849, August.
    3. Al-Jammal, Noor & Al-Hamamre, Zayed & Alnaief, Mohammad, 2016. "Manufacturing of zeolite based catalyst from zeolite tuft for biodiesel production from waste sunflower oil," Renewable Energy, Elsevier, vol. 93(C), pages 449-459.
    4. Ondřej Filip & Karel Janda & Ladislav Krištoufek, 2018. "Ceny biopaliv a souvisejících komodit: analýza s použitím metod minimální kostry grafu a hierarchických stromů [Prices of Biofuels and Related Commodities: an Analysis Using Methods of Minimum Span," Politická ekonomie, Prague University of Economics and Business, vol. 2018(2), pages 218-239.
    5. Fabián Vargas & Armando Pérez & Rene Delgado & Emilio Hernández & José Alejandro Suástegui, 2019. "Performance Analysis of a Compression Ignition Engine Using Mixture Biodiesel Palm and Diesel," Sustainability, MDPI, vol. 11(18), pages 1-26, September.
    6. Lundberg, Liv & Cintas Sanchez, Olivia & Zetterholm, Jonas, 2023. "The impact of blending mandates on biofuel consumption, production, emission reductions and fuel prices," Energy Policy, Elsevier, vol. 183(C).
    7. Gabriela N. Tenea & Fabricio Veintimilla, 2021. "Potential Use of Native Yeasts to Produce Bioethanol and Other Byproducts from Black Sugarcane, an Alternative to Increment the Subsistence Farming in Northern Ecuador," Sustainability, MDPI, vol. 13(19), pages 1-15, September.
    8. Deepayan Debnath & Madhu Khanna & Deepak Rajagopal & David Zilberman, 2019. "The Future of Biofuels in an Electrifying Global Transportation Sector: Imperative, Prospects and Challenges," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 41(4), pages 563-582, December.
    9. Ishola, Mofoluwake M. & Brandberg, Tomas & Sanni, Sikiru A. & Taherzadeh, Mohammad J., 2013. "Biofuels in Nigeria: A critical and strategic evaluation," Renewable Energy, Elsevier, vol. 55(C), pages 554-560.
    10. Jason Yi Juang Yeo & Bing Shen How & Sin Yong Teng & Wei Dong Leong & Wendy Pei Qin Ng & Chun Hsion Lim & Sue Lin Ngan & Jaka Sunarso & Hon Loong Lam, 2020. "Synthesis of Sustainable Circular Economy in Palm Oil Industry Using Graph-Theoretic Method," Sustainability, MDPI, vol. 12(19), pages 1-29, September.
    11. Russi, Daniela, 2008. "An integrated assessment of a large-scale biodiesel production in Italy: Killing several birds with one stone?," Energy Policy, Elsevier, vol. 36(3), pages 1169-1180, March.
    12. Curtis McKnight & Feng Qiu & Marty Luckert & Grant Hauer, 2021. "Prices for a second‐generation biofuel industry in Canada: Market linkages between Canadian wheat and US energy and agricultural commodities," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 69(3), pages 337-351, September.
    13. Wiraditma Prananta & Ida Kubiszewski, 2021. "Assessment of Indonesia’s Future Renewable Energy Plan: A Meta-Analysis of Biofuel Energy Return on Investment (EROI)," Energies, MDPI, vol. 14(10), pages 1-15, May.
    14. Yusuff, Adeyinka S. & Bhonsle, Aman K. & Bangwal, Dinesh P. & Atray, Neeraj, 2021. "Development of a barium-modified zeolite catalyst for biodiesel production from waste frying oil: Process optimization by design of experiment," Renewable Energy, Elsevier, vol. 177(C), pages 1253-1264.
    15. Agarwal, Deepak & Kumar, Lokesh & Agarwal, Avinash Kumar, 2008. "Performance evaluation of a vegetable oil fuelled compression ignition engine," Renewable Energy, Elsevier, vol. 33(6), pages 1147-1156.
    16. Laureano Costarrosa & David Eduardo Leiva-Candia & Antonio José Cubero-Atienza & Juan José Ruiz & M. Pilar Dorado, 2018. "Optimization of the Transesterification of Waste Cooking Oil with Mg-Al Hydrotalcite Using Response Surface Methodology," Energies, MDPI, vol. 11(2), pages 1-9, January.
    17. Anu, & Kumar, Anil & Rapoport, Alexander & Kunze, Gotthard & Kumar, Sanjeev & Singh, Davender & Singh, Bijender, 2020. "Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review," Renewable Energy, Elsevier, vol. 160(C), pages 1228-1252.
    18. Conteratto, Caroline & Artuzo, Felipe Dalzotto & Benedetti Santos, Omar Inácio & Talamini, Edson, 2021. "Biorefinery: A comprehensive concept for the sociotechnical transition toward bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    19. Marie Rougier & Jérôme Bellettre & Lingai Luo, 2021. "An Experimental Study of a Wine Batch Distillation in a Copper Pot Still Heated by Gas," Energies, MDPI, vol. 14(11), pages 1-25, June.
    20. Khatibi, Maryam & Khorasheh, Farhad & Larimi, Afsanehsadat, 2021. "Biodiesel production via transesterification of canola oil in the presence of Na–K doped CaO derived from calcined eggshell," Renewable Energy, Elsevier, vol. 163(C), pages 1626-1636.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2994-:d:369751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.