IDEAS home Printed from https://ideas.repec.org/a/bla/wireae/v8y2019i1ne319.html
   My bibliography  Save this article

Technoeconomic assessment of hydrothermal liquefaction oil from lignin with catalytic upgrading for renewable fuel and chemical production

Author

Listed:
  • LiLu T. Funkenbusch
  • Michael E. Mullins
  • Lennart Vamling
  • Tallal Belkhieri
  • Nattapol Srettiwat
  • Olumide Winjobi
  • David R. Shonnard
  • Tony N. Rogers

Abstract

Lignin is a readily available by‐product of the Kraft pulping process, and may be processed via hydrothermal liquefaction (HTL) to produce a bio‐oil suitable for cofeeding into a petroleum refinery hydrotreatment unit. HTL of lignin is performed in near‐critical water and, in addition to the bio‐oil, produces an aqueous organic and solid char phase. The aqueous organics are primarily phenolics, which may be converted into valuable coproducts via liquid–liquid extraction and hydrotreatment to benzene, toluene, ethylbenzene, and xylenes (BTEX) compounds. Three technological scenarios were developed: a current technology case, a state‐of‐the‐art research case, and an optimal case based on product targets provided by refiners. For a large Kraft pulp mill (400 metric tons/day of dry lignin), a renewable fuel production of 65–70 million L/year, with capital costs of $114–125 million and a final per liter cost of $0.41–0.44 were estimated. The BTEX coproduct yield ranged from 16.8–18.0 million L/year. An economic analysis of the process revealed that the hydrotreatment steps have the highest installed capital costs, while the liquid–liquid extraction process is the largest operating cost. Based on these results, the minimum selling price (MSP) of the biofuel is between $3.52 and $3.86/gallon, and the MSP of BTEX is between $1.65 and $2.00 per liter. With current technology, coproduction of BTEX does not offset the cost of biofuel production. Improved technology to further lower bio‐oil oxygen content and decrease both capital and operating costs are needed to make HTL‐based fuels competitive with fossil fuel‐based options. This article is categorized under: Energy Research & Innovation > Science and Materials Bioenergy > Economics and Policy Bioenergy > Systems and Infrastructure

Suggested Citation

  • LiLu T. Funkenbusch & Michael E. Mullins & Lennart Vamling & Tallal Belkhieri & Nattapol Srettiwat & Olumide Winjobi & David R. Shonnard & Tony N. Rogers, 2019. "Technoeconomic assessment of hydrothermal liquefaction oil from lignin with catalytic upgrading for renewable fuel and chemical production," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(1), January.
  • Handle: RePEc:bla:wireae:v:8:y:2019:i:1:n:e319
    DOI: 10.1002/wene.319
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wene.319
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wene.319?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Azadi, Pooya & Inderwildi, Oliver R. & Farnood, Ramin & King, David A., 2013. "Liquid fuels, hydrogen and chemicals from lignin: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 506-523.
    2. Toor, Saqib Sohail & Rosendahl, Lasse & Rudolf, Andreas, 2011. "Hydrothermal liquefaction of biomass: A review of subcritical water technologies," Energy, Elsevier, vol. 36(5), pages 2328-2342.
    3. Zhu, Yunhua & Biddy, Mary J. & Jones, Susanne B. & Elliott, Douglas C. & Schmidt, Andrew J., 2014. "Techno-economic analysis of liquid fuel production from woody biomass via hydrothermal liquefaction (HTL) and upgrading," Applied Energy, Elsevier, vol. 129(C), pages 384-394.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abraham Castro Garcia & Shuo Cheng & Jeffrey S. Cross, 2022. "Lignin Gasification: Current and Future Viability," Energies, MDPI, vol. 15(23), pages 1-17, November.
    2. Jukka Lappalainen & David Baudouin & Ursel Hornung & Julia Schuler & Kristian Melin & Saša Bjelić & Frédéric Vogel & Jukka Konttinen & Tero Joronen, 2020. "Sub- and Supercritical Water Liquefaction of Kraft Lignin and Black Liquor Derived Lignin," Energies, MDPI, vol. 13(13), pages 1-45, June.
    3. Sennai Mesfun & Leonidas Matsakas & Ulrika Rova & Paul Christakopoulos, 2019. "Technoeconomic Assessment of Hybrid Organosolv–Steam Explosion Pretreatment of Woody Biomass," Energies, MDPI, vol. 12(21), pages 1-18, November.
    4. Michał Wojcieszyk & Lotta Knuutila & Yuri Kroyan & Mário de Pinto Balsemão & Rupali Tripathi & Juha Keskivali & Anna Karvo & Annukka Santasalo-Aarnio & Otto Blomstedt & Martti Larmi, 2021. "Performance of Anisole and Isobutanol as Gasoline Bio-Blendstocks for Spark Ignition Engines," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    5. Sennai Mesfun & Gabriel Gustafsson & Anton Larsson & Mahrokh Samavati & Erik Furusjö, 2023. "Electrification of Biorefinery Concepts for Improved Productivity—Yield, Economic and GHG Performances," Energies, MDPI, vol. 16(21), pages 1-22, November.
    6. Cao, Yang & He, Mingjing & Dutta, Shanta & Luo, Gang & Zhang, Shicheng & Tsang, Daniel C.W., 2021. "Hydrothermal carbonization and liquefaction for sustainable production of hydrochar and aromatics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magdeldin, Mohamed & Kohl, Thomas & Järvinen, Mika, 2017. "Techno-economic assessment of the by-products contribution from non-catalytic hydrothermal liquefaction of lignocellulose residues," Energy, Elsevier, vol. 137(C), pages 679-695.
    2. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Yan, Kai & Wu, Guosheng & Lafleur, Todd & Jarvis, Cody, 2014. "Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 663-676.
    4. Collett, James R. & Billing, Justin M. & Meyer, Pimphan A. & Schmidt, Andrew J. & Remington, A. Brook & Hawley, Erik R. & Hofstad, Beth A. & Panisko, Ellen A. & Dai, Ziyu & Hart, Todd R. & Santosa, Da, 2019. "Renewable diesel via hydrothermal liquefaction of oleaginous yeast and residual lignin from bioconversion of corn stover," Applied Energy, Elsevier, vol. 233, pages 840-853.
    5. Nie, Yuhao & Bi, Xiaotao T., 2018. "Techno-economic assessment of transportation biofuels from hydrothermal liquefaction of forest residues in British Columbia," Energy, Elsevier, vol. 153(C), pages 464-475.
    6. Biswas, Bijoy & Arun Kumar, Aishwarya & Bisht, Yashasvi & Krishna, Bhavya B. & Kumar, Jitendra & Bhaskar, Thallada, 2021. "Role of temperatures and solvents on hydrothermal liquefaction of Azolla filiculoides," Energy, Elsevier, vol. 217(C).
    7. Déniel, Maxime & Haarlemmer, Geert & Roubaud, Anne & Weiss-Hortala, Elsa & Fages, Jacques, 2016. "Energy valorisation of food processing residues and model compounds by hydrothermal liquefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1632-1652.
    8. Stefano Dell’Orco & Edoardo Miliotti & Giulia Lotti & Andrea Maria Rizzo & Luca Rosi & David Chiaramonti, 2020. "Hydrothermal Depolymerization of Biorefinery Lignin-Rich Streams: Influence of Reaction Conditions and Catalytic Additives on the Organic Monomers Yields in Biocrude and Aqueous Phase," Energies, MDPI, vol. 13(5), pages 1-22, March.
    9. Shen, Ruixia & Jiang, Yong & Ge, Zheng & Lu, Jianwen & Zhang, Yuanhui & Liu, Zhidan & Ren, Zhiyong Jason, 2018. "Microbial electrolysis treatment of post-hydrothermal liquefaction wastewater with hydrogen generation," Applied Energy, Elsevier, vol. 212(C), pages 509-515.
    10. Ambursa, Murtala M. & Juan, Joon Ching & Yahaya, Y. & Taufiq-Yap, Y.H. & Lin, Yu-Chuan & Lee, Hwei Voon, 2021. "A review on catalytic hydrodeoxygenation of lignin to transportation fuels by using nickel-based catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    11. Wu, Xiao-Fei & Yin, Shuang-Shuang & Zhou, Qian & Li, Ming-Fei & Peng, Feng & Xiao, Xiao, 2019. "Subcritical liquefaction of lignocellulose for the production of bio-oils in ethanol/water system," Renewable Energy, Elsevier, vol. 136(C), pages 865-872.
    12. Kumar, Mayank & Olajire Oyedun, Adetoyese & Kumar, Amit, 2018. "A review on the current status of various hydrothermal technologies on biomass feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1742-1770.
    13. Shahbeik, Hossein & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Guillemin, Gilles J. & Fallahi, Alireza & Hosseinzadeh-Bandbafha, Homa & Amiri, Hamid & Rehan, Mohammad & Raikwar, Deepak & Latine, , 2024. "Biomass to biofuels using hydrothermal liquefaction: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    14. Hrnčič, Maša Knez & Kravanja, Gregor & Knez, Željko, 2016. "Hydrothermal treatment of biomass for energy and chemicals," Energy, Elsevier, vol. 116(P2), pages 1312-1322.
    15. Arun, Naveenji & Sharma, Rajesh V. & Dalai, Ajay K., 2015. "Green diesel synthesis by hydrodeoxygenation of bio-based feedstocks: Strategies for catalyst design and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 240-255.
    16. Cheng, Feng & Brewer, Catherine E., 2017. "Producing jet fuel from biomass lignin: Potential pathways to alkyl-benzenes and cycloalkanes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 673-722.
    17. Shamsul, N.S. & Kamarudin, S.K. & Rahman, N.A., 2017. "Conversion of bio-oil to bio gasoline via pyrolysis and hydrothermal: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 538-549.
    18. Yongsheng Zhang & Jamie Minaret & Zhongshun Yuan & Animesh Dutta & Chunbao (Charles) Xu, 2018. "Mild Hydrothermal Liquefaction of High Water Content Agricultural Residue for Bio-Crude Oil Production: A Parametric Study," Energies, MDPI, vol. 11(11), pages 1-13, November.
    19. Daniele Castello & Thomas Helmer Pedersen & Lasse Aistrup Rosendahl, 2018. "Continuous Hydrothermal Liquefaction of Biomass: A Critical Review," Energies, MDPI, vol. 11(11), pages 1-35, November.
    20. Walmsley, Timothy Gordon & Ong, Benjamin H.Y. & Klemeš, Jiří Jaromír & Tan, Raymond R. & Varbanov, Petar Sabev, 2019. "Circular Integration of processes, industries, and economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 507-515.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:wireae:v:8:y:2019:i:1:n:e319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=2041-8396 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.