IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2887-d367614.html
   My bibliography  Save this article

Performance Assessment of a Building Integrated Photovoltaic Thermal System in Mediterranean Climate—A Numerical Simulation Approach

Author

Listed:
  • Karol Bot

    (Laboratório Nacional de Energia e Geologia (LNEG), 1649-038 Lisbon, Portugal)

  • Laura Aelenei

    (Laboratório Nacional de Energia e Geologia (LNEG), 1649-038 Lisbon, Portugal)

  • Maria da Glória Gomes

    (CERIS, Department of Civil Engineering, Architecture and Georesources (DECivil), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal)

  • Carlos Santos Silva

    (IN+, Center for Innovation, Technology and Policy Research /LARSyS, Department of Mechanical Engineering (DEM), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal)

Abstract

This study addresses the thermal and energy performance assessment of a Building Integrated Photovoltaic Thermal (BIPVT) system installed on the façade of a test room in Solar XXI, a Net Zero Energy Building (NZEB) located in Lisbon, Portugal. A numerical analysis using the dynamic simulation tool EnergyPlus was carried out for assessing the performance of the test room with the BIPVT integrated on its façade through a parametric analysis of 14 scenarios in two conditions: a) receiving direct solar gains on the glazing surface and b) avoiding direct solar gains on the glazing surface. Additionally, a computational fluid dynamics (CFD) analysis of the BIPVT system was performed using ANSYS Fluent. The findings of this work demonstrate that the BIPVT has a good potential to improve the sustainability of the building by reducing the nominal energy needs to achieve thermal comfort, reducing up to 48% the total energy needs for heating and cooling compared to the base case. The operation mode must be adjusted to the other strategies already implemented in the room (e.g., the presence of windows and blinds to control direct solar gains), and the automatic operation mode has proven to have a better performance in the scope of this work.

Suggested Citation

  • Karol Bot & Laura Aelenei & Maria da Glória Gomes & Carlos Santos Silva, 2020. "Performance Assessment of a Building Integrated Photovoltaic Thermal System in Mediterranean Climate—A Numerical Simulation Approach," Energies, MDPI, vol. 13(11), pages 1-25, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2887-:d:367614
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2887/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2887/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Buonomano, Annamaria & Calise, Francesco & Palombo, Adolfo & Vicidomini, Maria, 2016. "BIPVT systems for residential applications: An energy and economic analysis for European climates," Applied Energy, Elsevier, vol. 184(C), pages 1411-1431.
    2. Dimitris Al. Katsaprakakis & Georgios Zidianakis & Yiannis Yiannakoudakis & Evaggelos Manioudakis & Irini Dakanali & Spyros Kanouras, 2020. "Working on Buildings’ Energy Performance Upgrade in Mediterranean Climate," Energies, MDPI, vol. 13(9), pages 1-28, May.
    3. Debbarma, Mary & Sudhakar, K. & Baredar, Prashant, 2017. "Thermal modeling, exergy analysis, performance of BIPV and BIPVT: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1276-1288.
    4. Liu, Mingzhe & Heiselberg, Per, 2019. "Energy flexibility of a nearly zero-energy building with weather predictive control on a convective building energy system and evaluated with different metrics," Applied Energy, Elsevier, vol. 233, pages 764-775.
    5. Junker, Rune Grønborg & Azar, Armin Ghasem & Lopes, Rui Amaral & Lindberg, Karen Byskov & Reynders, Glenn & Relan, Rishi & Madsen, Henrik, 2018. "Characterizing the energy flexibility of buildings and districts," Applied Energy, Elsevier, vol. 225(C), pages 175-182.
    6. Pereira, Ricardo & Aelenei, Laura, 2019. "Optimization assessment of the energy performance of a BIPV/T-PCM system using Genetic Algorithms," Renewable Energy, Elsevier, vol. 137(C), pages 157-166.
    7. Hu, Yue & Guo, Rui & Heiselberg, Per Kvols, 2020. "Performance and control strategy development of a PCM enhanced ventilated window system by a combined experimental and numerical study," Renewable Energy, Elsevier, vol. 155(C), pages 134-152.
    8. Carli, Raffaele & Dotoli, Mariagrazia & Jantzen, Jan & Kristensen, Michael & Ben Othman, Sarah, 2020. "Energy scheduling of a smart microgrid with shared photovoltaic panels and storage: The case of the Ballen marina in Samsø," Energy, Elsevier, vol. 198(C).
    9. Peng, Jinqing & Curcija, Dragan C. & Lu, Lin & Selkowitz, Stephen E. & Yang, Hongxing & Zhang, Weilong, 2016. "Numerical investigation of the energy saving potential of a semi-transparent photovoltaic double-skin facade in a cool-summer Mediterranean climate," Applied Energy, Elsevier, vol. 165(C), pages 345-356.
    10. Verbeke, Stijn & Audenaert, Amaryllis, 2018. "Thermal inertia in buildings: A review of impacts across climate and building use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2300-2318.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karol Bot & Laura Aelenei & Hélder Gonçalves & Maria da Glória Gomes & Carlos Santos Silva, 2021. "Performance Assessment of a Building-Integrated Photovoltaic Thermal System in a Mediterranean Climate—An Experimental Analysis Approach," Energies, MDPI, vol. 14(8), pages 1-30, April.
    2. José Marco Lourenço & Laura Aelenei & Miguel Sousa & Jorge Facão & Helder Gonçalves, 2021. "Thermal Behavior of a BIPV Combined with Water Storage: An Experimental Analysis," Energies, MDPI, vol. 14(9), pages 1-19, April.
    3. Abdelrazik, A.S. & Shboul, Bashar & Elwardany, Mohamed & Zohny, R.N. & Osama, Ahmed, 2022. "The recent advancements in the building integrated photovoltaic/thermal (BIPV/T) systems: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    4. José Marco Lourenço & Laura Aelenei & Jorge Facão & Helder Gonçalves & Daniel Aelenei & João Murta Pina, 2021. "The Use of Key Enabling Technologies in the Nearly Zero Energy Buildings Monitoring, Control and Intelligent Management," Energies, MDPI, vol. 14(17), pages 1-21, September.
    5. Angela Amato & Matteo Bilardo & Enrico Fabrizio & Valentina Serra & Filippo Spertino, 2021. "Energy Evaluation of a PV-Based Test Facility for Assessing Future Self-Sufficient Buildings," Energies, MDPI, vol. 14(2), pages 1-23, January.
    6. Rokas Tamašauskas & Jolanta Šadauskienė & Dorota Anna Krawczyk & Violeta Medelienė, 2020. "Analysis of Primary Energy Factors from Photovoltaic Systems for a Nearly Zero Energy Building (NZEB): A Case Study in Lithuania," Energies, MDPI, vol. 13(16), pages 1-15, August.
    7. Mohammad Hassan Shahverdian & Saba Sedayevatan & Sajjad Latif Damavandi & Ali Sohani & Hoseyn Sayyaadi, 2022. "A Road Map to Detect the Foremost 3E Potential Areas for Installation of PV Façade Technology Using Multi-Criteria Decision Making," Sustainability, MDPI, vol. 14(23), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    2. Jennifer Date & José A. Candanedo & Andreas K. Athienitis, 2021. "A Methodology for the Enhancement of the Energy Flexibility and Contingency Response of a Building through Predictive Control of Passive and Active Storage," Energies, MDPI, vol. 14(5), pages 1-28, March.
    3. Ke, Wei & Ji, Jie & Wang, Chuyao & Zhang, Chengyan & Xie, Hao & Tang, Yayun & Lin, Yuan, 2022. "Comparative analysis on the electrical and thermal performance of two CdTe multi-layer ventilated windows with and without a middle PCM layer: A preliminary numerical study," Renewable Energy, Elsevier, vol. 189(C), pages 1306-1323.
    4. Abdelrazik, A.S. & Shboul, Bashar & Elwardany, Mohamed & Zohny, R.N. & Osama, Ahmed, 2022. "The recent advancements in the building integrated photovoltaic/thermal (BIPV/T) systems: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    5. Li, Han & Johra, Hicham & de Andrade Pereira, Flavia & Hong, Tianzhen & Le Dréau, Jérôme & Maturo, Anthony & Wei, Mingjun & Liu, Yapan & Saberi-Derakhtenjani, Ali & Nagy, Zoltan & Marszal-Pomianowska,, 2023. "Data-driven key performance indicators and datasets for building energy flexibility: A review and perspectives," Applied Energy, Elsevier, vol. 343(C).
    6. Xu, Lijie & Ji, Jie & Cai, Jingyong & Ke, Wei & Tian, Xinyi & Yu, Bendong & Wang, Jun, 2021. "A hybrid PV thermal (water or air) wall system integrated with double air channel and phase change material: A continuous full-day seasonal experimental research," Renewable Energy, Elsevier, vol. 173(C), pages 596-613.
    7. Li, Meng & Ma, Tao & Liu, Jiaying & Li, Huanhuan & Xu, Yaling & Gu, Wenbo & Shen, Lu, 2019. "Numerical and experimental investigation of precast concrete facade integrated with solar photovoltaic panels," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    8. Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).
    9. Karol Bot & Laura Aelenei & Hélder Gonçalves & Maria da Glória Gomes & Carlos Santos Silva, 2021. "Performance Assessment of a Building-Integrated Photovoltaic Thermal System in a Mediterranean Climate—An Experimental Analysis Approach," Energies, MDPI, vol. 14(8), pages 1-30, April.
    10. O'Connell, Sarah & Reynders, Glenn & Keane, Marcus M., 2021. "Impact of source variability on flexibility for demand response," Energy, Elsevier, vol. 237(C).
    11. Silvia Erba & Lorenzo Pagliano, 2021. "Combining Sufficiency, Efficiency and Flexibility to Achieve Positive Energy Districts Targets," Energies, MDPI, vol. 14(15), pages 1-32, August.
    12. Ke, Wei & Ji, Jie & Xu, Lijie & Xie, Hao & Wang, Chuyao & Yu, Bendong, 2021. "Annual performance analysis of a dual-air-channel solar wall system with phase change material in different climate regions of China," Energy, Elsevier, vol. 235(C).
    13. Vassiliades, C. & Barone, G. & Buonomano, A. & Forzano, C. & Giuzio, G.F. & Palombo, A., 2022. "Assessment of an innovative plug and play PV/T system integrated in a prefabricated house unit: Active and passive behaviour and life cycle cost analysis," Renewable Energy, Elsevier, vol. 186(C), pages 845-863.
    14. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Wu, Jing & Zhang, Yelin & Wu, Zhenghong, 2018. "Numerical evaluation on energy saving potential of a solar photovoltaic thermoelectric radiant wall system in cooling dominant climates," Energy, Elsevier, vol. 142(C), pages 384-399.
    15. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Palombo, Adolfo, 2020. "Passive and active performance assessment of building integrated hybrid solar photovoltaic/thermal collector prototypes: Energy, comfort, and economic analyses," Energy, Elsevier, vol. 209(C).
    16. Zhou, Bochao & Pei, Jianzhong & Calautit, John Kaiser & Zhang, Jiupeng & Yong, Ling Xin & Pantua, Conrad Allan Jay, 2022. "Analysis of mechanical response and energy efficiency of a pavement integrated photovoltaic/thermal system (PIPVT)," Renewable Energy, Elsevier, vol. 194(C), pages 1-12.
    17. Arkar, C. & Žižak, T. & Domjan, S. & Medved, S., 2020. "Dynamic parametric models for the holistic evaluation of semi-transparent photovoltaic/thermal façade with latent storage inserts," Applied Energy, Elsevier, vol. 280(C).
    18. Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
    19. Majdalani, Naim & Aelenei, Daniel & Lopes, Rui Amaral & Silva, Carlos Augusto Santo, 2020. "The potential of energy flexibility of space heating and cooling in Portugal," Utilities Policy, Elsevier, vol. 66(C).
    20. Fabietti, Luca & Qureshi, Faran A. & Gorecki, Tomasz T. & Salzmann, Christophe & Jones, Colin N., 2018. "Multi-time scale coordination of complementary resources for the provision of ancillary services," Applied Energy, Elsevier, vol. 229(C), pages 1164-1180.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2887-:d:367614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.