IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i24p11093-d1546577.html
   My bibliography  Save this article

Optimization Algorithms for Sustainable Operation of Multi-Unit Hydropower Plants

Author

Listed:
  • Mariusz Lewandowski

    (The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 80-231 Gdańsk, Poland)

  • Adam Góralczyk

    (The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 80-231 Gdańsk, Poland)

  • Waldemar Janicki

    (The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 80-231 Gdańsk, Poland)

Abstract

The work presented in this article concerns numerical studies on optimization methods used for the sustainable utilization of the energy potential of water, converting it into electricity in a hydropower plant equipped with more than one unit. These methods allow for maximization of production in given hydrological conditions, leading to the balanced, lossless, and environmentally friendly use of the renewable energy source that is water. Methods are selected from three groups, i.e., analytical, enumeration, and randomized. The results of calculations of optimal points of selected test functions carried out using the Broyden–Fletcher–Goldfarb–Shanno Limited-Memory Version (L-BFGS-B), Explicit Complete Enumeration (ECE), and Genetic Algorithm (GA) methods provided basic information on the features of these methods. Based on these tests, the GA method was selected to solve the problem of the optimal load distribution in a hydropower plant equipped with three identical hydro units. The defined optimization problem consisted of finding a configuration of hydro units in operation that would guarantee the maximum efficiency of the power plant under the imposed hydrological conditions. During the numerical studies, a number of calculations were performed to identify the impact of procedures and parameters characteristic of the optimization methods on the obtained results. Particular attention was paid to the GA method and penalty functions, enabling the elimination of results from the area of prohibited solutions.

Suggested Citation

  • Mariusz Lewandowski & Adam Góralczyk & Waldemar Janicki, 2024. "Optimization Algorithms for Sustainable Operation of Multi-Unit Hydropower Plants," Sustainability, MDPI, vol. 16(24), pages 1-26, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:11093-:d:1546577
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/24/11093/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/24/11093/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ali Thaeer Hammid & Omar I. Awad & Mohd Herwan Sulaiman & Saraswathy Shamini Gunasekaran & Salama A. Mostafa & Nallapaneni Manoj Kumar & Bashar Ahmad Khalaf & Yasir Amer Al-Jawhar & Raed Abdulkareem A, 2020. "A Review of Optimization Algorithms in Solving Hydro Generation Scheduling Problems," Energies, MDPI, vol. 13(11), pages 1-21, June.
    2. Singh, Vineet Kumar & Singal, S.K., 2017. "Operation of hydro power plants-a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 610-619.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    2. Michels-Brito, Adriane & Rodriguez, Daniel Andrés & Cruz Junior, Wellington Luís & Nildo de Souza Vianna, João, 2021. "The climate change potential effects on the run-of-river plant and the environmental and economic dimensions of sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    3. Wei, Hu & Hongxuan, Zhang & Yu, Dong & Yiting, Wang & Ling, Dong & Ming, Xiao, 2019. "Short-term optimal operation of hydro-wind-solar hybrid system with improved generative adversarial networks," Applied Energy, Elsevier, vol. 250(C), pages 389-403.
    4. Geoffrey Gasore & Arthur Santos & Etienne Ntagwirumugara & Daniel Zimmerle, 2023. "Sizing of Small Hydropower Plants for Highly Variable Flows in Tropical Run-of-River Installations: A Case Study of the Sebeya River," Energies, MDPI, vol. 16(3), pages 1-14, January.
    5. Geon Lee & Hyunjung Kang & Jooyeong Yun & Dongwoo Chae & Minsu Jeong & Minseo Jeong & Dasol Lee & Miso Kim & Heon Lee & Junsuk Rho, 2024. "Integrated triboelectric nanogenerator and radiative cooler for all-weather transparent glass surfaces," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Yixuan Guo & Xiao Liang & Ziyu Niu & Zezhou Cao & Liuwei Lei & Hualin Xiong & Diyi Chen, 2021. "Vibration Characteristics of a Hydroelectric Generating System with Different Hydraulic-Mechanical-Electric Parameters in a Sudden Load Increasing Process," Energies, MDPI, vol. 14(21), pages 1-21, November.
    7. Haugen, Mari & Blaisdell-Pijuan, Paris L. & Botterud, Audun & Levin, Todd & Zhou, Zhi & Belsnes, Michael & Korpås, Magnus & Somani, Abhishek, 2024. "Power market models for the clean energy transition: State of the art and future research needs," Applied Energy, Elsevier, vol. 357(C).
    8. Seme, Sebastijan & Sredenšek, Klemen & Praunseis, Zdravko & Štumberger, Bojan & Hadžiselimović, Miralem, 2018. "Optimal price of electricity of solar power plants and small hydro power plants – Technical and economical part of investments," Energy, Elsevier, vol. 157(C), pages 87-95.
    9. Panagiotis I. Bakanos & Konstantinos L. Katsifarakis, 2020. "Optimizing Current and Future Hydroelectric Energy Production and Water Uses of the Complex Multi-Reservoir System in the Aliakmon River, Greece," Energies, MDPI, vol. 13(24), pages 1-23, December.
    10. Zhong, Zhiming & Fan, Neng & Wu, Lei, 2023. "A hybrid robust-stochastic optimization approach for day-ahead scheduling of cascaded hydroelectric system in restructured electricity market," European Journal of Operational Research, Elsevier, vol. 306(2), pages 909-926.
    11. Velásquez, Laura & Posada, Alejandro & Chica, Edwin, 2022. "Optimization of the basin and inlet channel of a gravitational water vortex hydraulic turbine using the response surface methodology," Renewable Energy, Elsevier, vol. 187(C), pages 508-521.
    12. Arabatzis, Garyfallos & Kyriakopoulos, Grigorios & Tsialis, Panagiotis, 2017. "Typology of regional units based on RES plants: The case of Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1424-1434.
    13. Marcin Rabe & Dalia Streimikiene & Wojciech Drożdż & Yuriy Bilan & Rafal Kasperowicz, 2020. "Sustainable regional energy planning: The case of hydro," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(6), pages 1652-1662, November.
    14. Hussain, Abid & Sarangi, Gopal K. & Pandit, Anju & Ishaq, Sultan & Mamnun, Nabir & Ahmad, Bashir & Jamil, Muhammad Khalid, 2019. "Hydropower development in the Hindu Kush Himalayan region: Issues, policies and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 446-461.
    15. Claudia Condemi & Loretta Mastroeni & Pierluigi Vellucci, 2021. "The impact of Clean Spark Spread expectations on storage hydropower generation," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 1111-1146, December.
    16. Yoan Villeneuve & Sara Séguin & Abdellah Chehri, 2023. "AI-Based Scheduling Models, Optimization, and Prediction for Hydropower Generation: Opportunities, Issues, and Future Directions," Energies, MDPI, vol. 16(8), pages 1-27, April.
    17. Roldán-Blay, Carlos & Escrivá-Escrivá, Guillermo & Roldán-Porta, Carlos & Dasí-Crespo, Daniel, 2023. "Optimal sizing and design of renewable power plants in rural microgrids using multi-objective particle swarm optimization and branch and bound methods," Energy, Elsevier, vol. 284(C).
    18. Ibrahim Mosly & Anas A. Makki, 2018. "Current Status and Willingness to Adopt Renewable Energy Technologies in Saudi Arabia," Sustainability, MDPI, vol. 10(11), pages 1-20, November.
    19. Leonardo Peña-Pupo & Herminio Martínez-García & Encarna García-Vílchez & Ernesto Y. Fariñas-Wong & José R. Núñez-Álvarez, 2021. "Combined Method of Flow-Reduced Dump Load for Frequency Control of an Autonomous Micro-Hydropower in AC Microgrids," Energies, MDPI, vol. 14(23), pages 1-17, December.
    20. Zhong, Zhiming & Fan, Neng & Wu, Lei, 2024. "Multistage Stochastic optimization for mid-term integrated generation and maintenance scheduling of cascaded hydroelectric system with renewable energy uncertainty," European Journal of Operational Research, Elsevier, vol. 318(1), pages 179-199.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:11093-:d:1546577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.