IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p3152-d182773.html
   My bibliography  Save this article

A Grid-Supporting Photovoltaic System Implemented by a VSG with Energy Storage

Author

Listed:
  • Huadian Xu

    (School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 23009, China)

  • Jianhui Su

    (School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 23009, China)

  • Ning Liu

    (School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 23009, China)

  • Yong Shi

    (School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 23009, China)

Abstract

Conventional photovoltaic (PV) systems interfaced by grid-connected inverters fail to support the grid and participate in frequency regulation. Furthermore, reduced system inertia as a result of the integration of conventional PV systems may lead to an increased frequency deviation of the grid for contingencies. In this paper, a grid-supporting PV system, which can provide inertia and participate in frequency regulation through virtual synchronous generator (VSG) technology and an energy storage unit, is proposed. The function of supporting the grid is implemented in a practical PV system through using the presented control scheme and topology. Compared with the conventional PV system, the grid-supporting PV system, behaving as an inertial voltage source like synchronous generators, has the capability of participating in frequency regulation and providing inertia. Moreover, the proposed PV system can mitigate autonomously the power imbalance between generation and consumption, filter the PV power, and operate without the phase-locked loop after initial synchronization. Performance analysis is conducted and the stability constraint is theoretically formulated. The novel PV system is validated on a modified CIGRE benchmark under different cases, being compared with the conventional PV system. The verifications demonstrate the grid support functions of the proposed PV system.

Suggested Citation

  • Huadian Xu & Jianhui Su & Ning Liu & Yong Shi, 2018. "A Grid-Supporting Photovoltaic System Implemented by a VSG with Energy Storage," Energies, MDPI, vol. 11(11), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3152-:d:182773
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/3152/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/3152/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Henrik Zsiborács & Nóra Hegedűsné Baranyai & András Vincze & István Háber & Gábor Pintér, 2018. "Economic and Technical Aspects of Flexible Storage Photovoltaic Systems in Europe," Energies, MDPI, vol. 11(6), pages 1-17, June.
    2. Gábor Pintér & Nóra Hegedűsné Baranyai & Alec Wiliams & Henrik Zsiborács, 2018. "Study of Photovoltaics and LED Energy Efficiency: Case Study in Hungary," Energies, MDPI, vol. 11(4), pages 1-13, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiaxin Wen & Siqi Bu & Bowen Zhou & Qiyu Chen & Dongsheng Yang, 2020. "A Fast-Algorithmic Probabilistic Evaluation on Regional Rate of Change of Frequency (RoCoF) for Operational Planning of High Renewable Penetrated Power Systems," Energies, MDPI, vol. 13(11), pages 1-14, June.
    2. Duberney Murillo-Yarce & José Alarcón-Alarcón & Marco Rivera & Carlos Restrepo & Javier Muñoz & Carlos Baier & Patrick Wheeler, 2020. "A Review of Control Techniques in Photovoltaic Systems," Sustainability, MDPI, vol. 12(24), pages 1-21, December.
    3. Teuvo Suntio & Tuomas Messo, 2019. "Power Electronics in Renewable Energy Systems," Energies, MDPI, vol. 12(10), pages 1-5, May.
    4. Gayan Abeynayake & Liana Cipcigan & Xiaolin Ding, 2022. "Black Start Capability from Large Industrial Consumers," Energies, MDPI, vol. 15(19), pages 1-25, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alberto Bocca & Luca Bergamasco & Matteo Fasano & Lorenzo Bottaccioli & Eliodoro Chiavazzo & Alberto Macii & Pietro Asinari, 2018. "Multiple-Regression Method for Fast Estimation of Solar Irradiation and Photovoltaic Energy Potentials over Europe and Africa," Energies, MDPI, vol. 11(12), pages 1-17, December.
    2. Moath Alsafasfeh & Ikhlas Abdel-Qader & Bradley Bazuin & Qais Alsafasfeh & Wencong Su, 2018. "Unsupervised Fault Detection and Analysis for Large Photovoltaic Systems Using Drones and Machine Vision," Energies, MDPI, vol. 11(9), pages 1-18, August.
    3. Hyunji Lee & Katherine A. Kim, 2018. "Design Considerations for Parallel Differential Power Processing Converters in a Photovoltaic-Powered Wearable Application," Energies, MDPI, vol. 11(12), pages 1-17, November.
    4. Xiaoyang Song & Yaohuan Huang & Chuanpeng Zhao & Yuxin Liu & Yanguo Lu & Yongguo Chang & Jie Yang, 2018. "An Approach for Estimating Solar Photovoltaic Potential Based on Rooftop Retrieval from Remote Sensing Images," Energies, MDPI, vol. 11(11), pages 1-14, November.
    5. Maria Simona Răboacă & Gheorghe Badea & Adrian Enache & Constantin Filote & Gabriel Răsoi & Mihai Rata & Alexandru Lavric & Raluca-Andreea Felseghi, 2019. "Concentrating Solar Power Technologies," Energies, MDPI, vol. 12(6), pages 1-17, March.
    6. Mashood Nasir & Hassan Abbas Khan & Irfan Khan & Naveed ul Hassan & Nauman Ahmad Zaffar & Aneeq Mehmood & Thilo Sauter & S. M. Muyeen, 2019. "Grid Load Reduction through Optimized PV Power Utilization in Intermittent Grids Using a Low-Cost Hardware Platform," Energies, MDPI, vol. 12(9), pages 1-21, May.
    7. Carlo Renno, 2018. "Experimental and Theoretical Analysis of a Linear Focus CPV/T System for Cogeneration Purposes," Energies, MDPI, vol. 11(11), pages 1-15, October.
    8. Alin Lin & Ming Lu & Pingjun Sun, 2018. "The Influence of Local Environmental, Economic and Social Variables on the Spatial Distribution of Photovoltaic Applications across China’s Urban Areas," Energies, MDPI, vol. 11(8), pages 1-14, July.
    9. Dimitar Bozalakov & Mohannad J. Mnati & Joannes Laveyne & Jan Desmet & Lieven Vandevelde, 2019. "Battery Storage Integration in Voltage Unbalance and Overvoltage Mitigation Control Strategies and Its Impact on the Power Quality," Energies, MDPI, vol. 12(8), pages 1-26, April.
    10. Iolanda Saviuc & Herbert Peremans & Steven Van Passel & Kevin Milis, 2019. "Economic Performance of Using Batteries in European Residential Microgrids under the Net-Metering Scheme," Energies, MDPI, vol. 12(1), pages 1-28, January.
    11. Milad Zeraatpisheh & Reza Arababadi & Mohsen Saffari Pour, 2018. "Economic Analysis for Residential Solar PV Systems Based on Different Demand Charge Tariffs," Energies, MDPI, vol. 11(12), pages 1-19, November.
    12. P. Madasamy & V. Suresh Kumar & P. Sanjeevikumar & Jens Bo Holm-Nielsen & Eklas Hosain & C. Bharatiraja, 2019. "A Three-Phase Transformerless T-Type- NPC-MLI for Grid Connected PV Systems with Common-Mode Leakage Current Mitigation," Energies, MDPI, vol. 12(12), pages 1-25, June.
    13. Xiangwu Yan & Jiajia Li & Ling Wang & Shuaishuai Zhao & Tie Li & Zhipeng Lv & Ming Wu, 2018. "Adaptive-MPPT-Based Control of Improved Photovoltaic Virtual Synchronous Generators," Energies, MDPI, vol. 11(7), pages 1-18, July.
    14. Yang Du & Ke Yan & Zixiao Ren & Weidong Xiao, 2018. "Designing Localized MPPT for PV Systems Using Fuzzy-Weighted Extreme Learning Machine," Energies, MDPI, vol. 11(10), pages 1-10, October.
    15. Enrique Navarrete-de Galvez & Alfonso Gago-Calderon & Luz Garcia-Ceballos & Miguel Angel Contreras-Lopez & Jose Ramon Andres-Diaz, 2021. "Adjustment of Lighting Parameters from Photopic to Mesopic Values in Outdoor Lighting Installations Strategy and Associated Evaluation of Variation in Energy Needs," Sustainability, MDPI, vol. 13(8), pages 1-14, April.
    16. S. Tamilselvi & S. Gunasundari & N. Karuppiah & Abdul Razak RK & S. Madhusudan & Vikas Madhav Nagarajan & T. Sathish & Mohammed Zubair M. Shamim & C. Ahamed Saleel & Asif Afzal, 2021. "A Review on Battery Modelling Techniques," Sustainability, MDPI, vol. 13(18), pages 1-26, September.
    17. Henrik Zsiborács & András Vincze & Gábor Pintér & Nóra Hegedűsné Baranyai, 2023. "A Comparative Examination of the Electricity Saving Potentials of Direct Residential PV Energy Use in European Countries," Sustainability, MDPI, vol. 15(8), pages 1-19, April.
    18. Atsu, Divine & Seres, Istvan & Farkas, Istvan, 2021. "The state of solar PV and performance analysis of different PV technologies grid-connected installations in Hungary," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    19. Sadeghian, Omid & Mohammadi-Ivatloo, Behnam & Oshnoei, Arman & Aghaei, Jamshid, 2024. "Unveiling the potential of renewable energy and battery utilization in real-world public lighting systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    20. Anna Wojewnik-Filipkowska & Paweł Filipkowski & Olaf Frąckowiak, 2023. "Analysis of Investments in RES Based on the Example of Photovoltaic Panels in Conditions of Uncertainty and Risk—A Case Study," Energies, MDPI, vol. 16(7), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3152-:d:182773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.