Shuffled Complex Evolution-Based Performance Enhancement and Analysis of Cascade Liquefaction Process for Large-Scale LNG Production
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wang, Hailei & Peterson, Richard & Harada, Kevin & Miller, Erik & Ingram-Goble, Robbie & Fisher, Luke & Yih, James & Ward, Chris, 2011. "Performance of a combined organic Rankine cycle and vapor compression cycle for heat activated cooling," Energy, Elsevier, vol. 36(1), pages 447-458.
- He, Tianbiao & Chong, Zheng Rong & Zheng, Junjie & Ju, Yonglin & Linga, Praveen, 2019. "LNG cold energy utilization: Prospects and challenges," Energy, Elsevier, vol. 170(C), pages 557-568.
- Mokarizadeh Haghighi Shirazi, M. & Mowla, D., 2010. "Energy optimization for liquefaction process of natural gas in peak shaving plant," Energy, Elsevier, vol. 35(7), pages 2878-2885.
- Qyyum, Muhammad Abdul & He, Tianbiao & Qadeer, Kinza & Mao, Ning & Lee, Sanggyu & Lee, Moonyong, 2020. "Dual-effect single-mixed refrigeration cycle: An innovative alternative process for energy-efficient and cost-effective natural gas liquefaction," Applied Energy, Elsevier, vol. 268(C).
- Qyyum, Muhammad Abdul & Lee, Moonyong, 2018. "Hydrofluoroolefin-based novel mixed refrigerant for energy efficient and ecological LNG production," Energy, Elsevier, vol. 157(C), pages 483-492.
- Böhringer, Christoph, 2003. "The Kyoto Protocol: A Review and Perspectives," ZEW Discussion Papers 03-61, ZEW - Leibniz Centre for European Economic Research.
- Wang, Jianzhou & Jiang, Haiyan & Zhou, Qingping & Wu, Jie & Qin, Shanshan, 2016. "China’s natural gas production and consumption analysis based on the multicycle Hubbert model and rolling Grey model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1149-1167.
- Chai, Jian & Liang, Ting & Lai, Kin Keung & Zhang, Zhe George & Wang, Shouyang, 2018. "The future natural gas consumption in China: Based on the LMDI-STIRPAT-PLSR framework and scenario analysis," Energy Policy, Elsevier, vol. 119(C), pages 215-225.
- Brodal, Eivind & Jackson, Steve & Eiksund, Oddmar, 2019. "Performance and design study of optimized LNG Mixed Fluid Cascade processes," Energy, Elsevier, vol. 189(C).
- Ghorbani, Bahram & Hamedi, Mohammad-Hossein & Amidpour, Majid & Mehrpooya, Mehdi, 2016. "Cascade refrigeration systems in integrated cryogenic natural gas process (natural gas liquids (NGL), liquefied natural gas (LNG) and nitrogen rejection unit (NRU))," Energy, Elsevier, vol. 115(P1), pages 88-106.
- He, Tianbiao & Mao, Ning & Liu, Zuming & Qyyum, Muhammad Abdul & Lee, Moonyong & Pravez, Ashak Mahmud, 2020. "Impact of mixed refrigerant selection on energy and exergy performance of natural gas liquefaction processes," Energy, Elsevier, vol. 199(C).
- He, Tianbiao & Ju, Yonglin, 2015. "Optimal synthesis of expansion liquefaction cycle for distributed-scale LNG (liquefied natural gas) plant," Energy, Elsevier, vol. 88(C), pages 268-280.
- He, Tianbiao & Liu, Zuming & Ju, Yonglin & Parvez, Ashak Mahmud, 2019. "A comprehensive optimization and comparison of modified single mixed refrigerant and parallel nitrogen expansion liquefaction process for small-scale mobile LNG plant," Energy, Elsevier, vol. 167(C), pages 1-12.
- Qyyum, Muhammad Abdul & Ali, Wahid & Long, Nguyen Van Duc & Khan, Mohd Shariq & Lee, Moonyong, 2018. "Energy efficiency enhancement of a single mixed refrigerant LNG process using a novel hydraulic turbine," Energy, Elsevier, vol. 144(C), pages 968-976.
- Khan, Mohd Shariq & Lee, Sanggyu & Rangaiah, G.P. & Lee, Moonyong, 2013. "Knowledge based decision making method for the selection of mixed refrigerant systems for energy efficient LNG processes," Applied Energy, Elsevier, vol. 111(C), pages 1018-1031.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ali Rehman & Muhammad Abdul Qyyum & Ashfaq Ahmad & Saad Nawaz & Moonyong Lee & Li Wang, 2020. "Performance Enhancement of Nitrogen Dual Expander and Single Mixed Refrigerant LNG Processes Using Jaya Optimization Approach," Energies, MDPI, vol. 13(12), pages 1-27, June.
- Fen Yang & Hossein Moayedi & Amir Mosavi, 2021. "Predicting the Degree of Dissolved Oxygen Using Three Types of Multi-Layer Perceptron-Based Artificial Neural Networks," Sustainability, MDPI, vol. 13(17), pages 1-20, September.
- Riaz, Amjad & Qyyum, Muhammad Abdul & Min, Seongwoong & Lee, Sanggyu & Lee, Moonyong, 2021. "Performance improvement potential of harnessing LNG regasification for hydrogen liquefaction process: Energy and exergy perspectives," Applied Energy, Elsevier, vol. 301(C).
- Lei Gao & Jiaxin Wang & Maxime Binama & Qian Li & Weihua Cai, 2022. "The Design and Optimization of Natural Gas Liquefaction Processes: A Review," Energies, MDPI, vol. 15(21), pages 1-56, October.
- Santos, Lucas F. & Costa, Caliane B.B. & Caballero, José A. & Ravagnani, Mauro A.S.S., 2023. "Multi-objective simulation–optimization via kriging surrogate models applied to natural gas liquefaction process design," Energy, Elsevier, vol. 262(PB).
- Hossein Moayedi & Amir Mosavi, 2021. "An Innovative Metaheuristic Strategy for Solar Energy Management through a Neural Networks Framework," Energies, MDPI, vol. 14(4), pages 1-18, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lei Gao & Jiaxin Wang & Maxime Binama & Qian Li & Weihua Cai, 2022. "The Design and Optimization of Natural Gas Liquefaction Processes: A Review," Energies, MDPI, vol. 15(21), pages 1-56, October.
- Qyyum, Muhammad Abdul & Ahmed, Faisal & Nawaz, Alam & He, Tianbiao & Lee, Moonyong, 2021. "Teaching-learning self-study approach for optimal retrofitting of dual mixed refrigerant LNG process: Energy and exergy perspective," Applied Energy, Elsevier, vol. 298(C).
- He, Tianbiao & Mao, Ning & Liu, Zuming & Qyyum, Muhammad Abdul & Lee, Moonyong & Pravez, Ashak Mahmud, 2020. "Impact of mixed refrigerant selection on energy and exergy performance of natural gas liquefaction processes," Energy, Elsevier, vol. 199(C).
- Son, Heechang & Austbø, Bjørn & Gundersen, Truls & Hwang, Jihyun & Lim, Youngsub, 2022. "Techno-economic versus energy optimization of natural gas liquefaction processes with different heat exchanger technologies," Energy, Elsevier, vol. 245(C).
- Ali Rehman & Muhammad Abdul Qyyum & Ashfaq Ahmad & Saad Nawaz & Moonyong Lee & Li Wang, 2020. "Performance Enhancement of Nitrogen Dual Expander and Single Mixed Refrigerant LNG Processes Using Jaya Optimization Approach," Energies, MDPI, vol. 13(12), pages 1-27, June.
- Jinxi, Wang & Xue, Bai & Ying, Liang & Aimin, Wang & Cuiying, Lu & Yajun, Ma & Chengmeng, Chen & Heydarian, Dariush, 2023. "Simulation and technical, economic, and environmental analyses of natural gas liquefaction cycle using different configurations," Energy, Elsevier, vol. 278(C).
- Qyyum, Muhammad Abdul & He, Tianbiao & Qadeer, Kinza & Mao, Ning & Lee, Sanggyu & Lee, Moonyong, 2020. "Dual-effect single-mixed refrigeration cycle: An innovative alternative process for energy-efficient and cost-effective natural gas liquefaction," Applied Energy, Elsevier, vol. 268(C).
- He, Tianbiao & Zhou, Zhongming & Mao, Ning & Qyyum, Muhammad Abdul, 2024. "Transcritical CO2 precooled single mixed refrigerant natural gas liquefaction process: Exergy and Exergoeconomic optimization," Energy, Elsevier, vol. 294(C).
- Qyyum, Muhammad Abdul & Qadeer, Kinza & Minh, Le Quang & Haider, Junaid & Lee, Moonyong, 2019. "Nitrogen self-recuperation expansion-based process for offshore coproduction of liquefied natural gas, liquefied petroleum gas, and pentane plus," Applied Energy, Elsevier, vol. 235(C), pages 247-257.
- Tak, Kyungjae & Choi, Jiwon & Ryu, Jun-Hyung & Moon, Il, 2020. "Sensitivity analysis of effects of design parameters and decision variables on optimization of natural gas liquefaction process," Energy, Elsevier, vol. 206(C).
- Brodal, Eivind & Jackson, Steve & Eiksund, Oddmar, 2019. "Performance and design study of optimized LNG Mixed Fluid Cascade processes," Energy, Elsevier, vol. 189(C).
- Rehman, Ali & Qyyum, Muhammad Abdul & Qadeer, Kinza & Zakir, Fatima & Ding, Yulong & Lee, Moonyong & Wang, Li, 2020. "Integrated biomethane liquefaction using exergy from the discharging end of a liquid air energy storage system," Applied Energy, Elsevier, vol. 260(C).
- Wang, Xucen & Li, Min & Cai, Liuxi & Li, Yun, 2020. "Propane and iso-butane pre-cooled mixed refrigerant liquefaction process for small-scale skid-mounted natural gas liquefaction," Applied Energy, Elsevier, vol. 275(C).
- Tak, Kyungjae & Park, Jaedeuk & Moon, Il & Lee, Ung, 2023. "Comparison of mixed refrigerant cycles for natural gas liquefaction: From single mixed refrigerant to mixed fluid cascade processes," Energy, Elsevier, vol. 272(C).
- Qyyum, Muhammad Abdul & Lee, Moonyong, 2018. "Hydrofluoroolefin-based novel mixed refrigerant for energy efficient and ecological LNG production," Energy, Elsevier, vol. 157(C), pages 483-492.
- Lin, Wensheng & Xiong, Xiaojun & Gu, Anzhong, 2018. "Optimization and thermodynamic analysis of a cascade PLNG (pressurized liquefied natural gas) process with CO2 cryogenic removal," Energy, Elsevier, vol. 161(C), pages 870-877.
- Jin, Chunhe & Yuan, Yilong & Son, Heechang & Lim, Youngsub, 2022. "Novel propane-free mixed refrigerant integrated with nitrogen expansion natural gas liquefaction process for offshore units," Energy, Elsevier, vol. 238(PA).
- Zhang, Qiang & Zhang, Ningqi & Zhu, Shengbo & Heydarian, Dariush, 2023. "Thermodynamic simulation and optimization of natural gas liquefaction cycle based on the common structure of organic rankine cycle," Energy, Elsevier, vol. 264(C).
- Riaz, Amjad & Qyyum, Muhammad Abdul & Min, Seongwoong & Lee, Sanggyu & Lee, Moonyong, 2021. "Performance improvement potential of harnessing LNG regasification for hydrogen liquefaction process: Energy and exergy perspectives," Applied Energy, Elsevier, vol. 301(C).
- He, Tianbiao & Zhang, Jibao & Mao, Ning & Linga, Praveen, 2021. "Organic Rankine cycle integrated with hydrate-based desalination for a sustainable energy–water nexus system," Applied Energy, Elsevier, vol. 291(C).
More about this item
Keywords
Mixed fluid cascade; liquefied natural gas; shuffled complex evolution; thermodynamic efficiency; compression power; exergy destruction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2511-:d:358836. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.