IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i9p1590-d226118.html
   My bibliography  Save this article

Wood Chip Drying through the Using of a Mobile Rotary Dryer

Author

Listed:
  • Angelo Del Giudice

    (Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA)—Centro di ricerca Ingegneria e Trasformazioni agroalimentari (CREA-IT)—Via della Pascolare 16, 00015 Monterotondo (Rome), Italy)

  • Andrea Acampora

    (Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA)—Centro di ricerca Ingegneria e Trasformazioni agroalimentari (CREA-IT)—Via della Pascolare 16, 00015 Monterotondo (Rome), Italy)

  • Enrico Santangelo

    (Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA)—Centro di ricerca Ingegneria e Trasformazioni agroalimentari (CREA-IT)—Via della Pascolare 16, 00015 Monterotondo (Rome), Italy)

  • Luigi Pari

    (Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA)—Centro di ricerca Ingegneria e Trasformazioni agroalimentari (CREA-IT)—Via della Pascolare 16, 00015 Monterotondo (Rome), Italy)

  • Simone Bergonzoli

    (Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA)—Centro di ricerca Ingegneria e Trasformazioni agroalimentari (CREA-IT)—Via della Pascolare 16, 00015 Monterotondo (Rome), Italy)

  • Ettore Guerriero

    (National Research Council of Italy, Insitute of Atmospheric Pollution Research, via Salaria km 29,300, 00015 Monterotondo (RM), Italy)

  • Francesco Petracchini

    (National Research Council of Italy, Insitute of Atmospheric Pollution Research, via Salaria km 29,300, 00015 Monterotondo (RM), Italy)

  • Marco Torre

    (National Research Council of Italy, Insitute of Atmospheric Pollution Research, via Salaria km 29,300, 00015 Monterotondo (RM), Italy)

  • Valerio Paolini

    (National Research Council of Italy, Insitute of Atmospheric Pollution Research, via Salaria km 29,300, 00015 Monterotondo (RM), Italy)

  • Francesco Gallucci

    (Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA)—Centro di ricerca Ingegneria e Trasformazioni agroalimentari (CREA-IT)—Via della Pascolare 16, 00015 Monterotondo (Rome), Italy)

Abstract

Drying is a critical point for the exploitation of biomass for energy production. High moisture content negatively affects the efficiency of power generation in combustion and gasification systems. Different types of dryers are available however; it is known that rotary dryers have low cost of maintenance and consume 15% and 30% less in terms of specific energy. The study analyzed the drying process of woody residues using a new prototype of mobile rotary dryer cocurrent flow. Woodchip of poplar ( Populus spp.), black locust ( Robinia pseudoacacia L.), and grapevine ( Vitis vinifera L.) pruning were dried in a rotary drier. The drying cycle lasted 8 h for poplar, 6 h for black locust, and 6 h for pruning of grapevine. The initial biomass had a moisture content of around 50% for the poplar and around 30% for grapevine and black locust. The study showed that some characteristics of the biomass (e.g., initial moisture content, particle size distribution, bulk density) influence the technical parameters (i.e., airflow temperature, rate, and speed) of the drying process and, hence, the energy demand. At the end of the drying process, 17% of water was removed for poplar wood chips and 31% for grapevine and black locust wood chips. To achieve this, result the three-biomass required 1.61 (poplar), 0.86 (grapevine), and 1.12 MJ kg dry solids −1 (black locust), with an efficiency of thermal drying ( η ) respectively of 37%, 12%, and 27%. In the future, the results obtained suggest an increase in the efficiency of the thermal insulation of the mobile dryer, and the application of the mobile dryer in a small farm, for the recovery of exhaust gases from thermal power plants.

Suggested Citation

  • Angelo Del Giudice & Andrea Acampora & Enrico Santangelo & Luigi Pari & Simone Bergonzoli & Ettore Guerriero & Francesco Petracchini & Marco Torre & Valerio Paolini & Francesco Gallucci, 2019. "Wood Chip Drying through the Using of a Mobile Rotary Dryer," Energies, MDPI, vol. 12(9), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1590-:d:226118
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/9/1590/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/9/1590/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Øyvind Langsrud & Kjetil Jørgensen & Ragni Ofstad & Tormod Næs, 2007. "Analyzing Designed Experiments with Multiple Responses," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(10), pages 1275-1296.
    2. Lamidi, Rasaq. O. & Jiang, L. & Pathare, Pankaj B. & Wang, Y.D. & Roskilly, A.P., 2019. "Recent advances in sustainable drying of agricultural produce: A review," Applied Energy, Elsevier, vol. 233, pages 367-385.
    3. Brammer, J. G. & Bridgwater, A. V., 1999. "Drying technologies for an integrated gasification bio-energy plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 3(4), pages 243-289, December.
    4. Cuevas, Manuel & Martínez-Cartas, María Lourdes & Pérez-Villarejo, Luis & Hernández, Lucía & García-Martín, Juan Francisco & Sánchez, Sebastián, 2019. "Drying kinetics and effective water diffusivities in olive stone and olive-tree pruning," Renewable Energy, Elsevier, vol. 132(C), pages 911-920.
    5. Tippayawong, N. & Tantakitti, C. & Thavornun, S., 2008. "Energy efficiency improvements in longan drying practice," Energy, Elsevier, vol. 33(7), pages 1137-1143.
    6. Anderson, Jan-Olof & Westerlund, Lars, 2014. "Improved energy efficiency in sawmill drying system," Applied Energy, Elsevier, vol. 113(C), pages 891-901.
    7. Johansson, L & Westerlund, L, 2000. "An open absorption system installed at a sawmill," Energy, Elsevier, vol. 25(11), pages 1067-1079.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kenji Koido & Eri Takata & Takashi Yanagida & Hirofumi Kuboyama, 2022. "Techno-Economic Assessment of Heat Supply Systems in Woodchip Drying Bases for Wood Gasification Combined Heat and Power," Sustainability, MDPI, vol. 14(24), pages 1-14, December.
    2. Dinko Vusić & Filip Vujanić & Karlo Pešić & Branimir Šafran & Vanja Jurišić & Željko Zečić, 2021. "Variability of Normative Properties of Wood Chips and Implications to Quality Control," Energies, MDPI, vol. 14(13), pages 1-16, June.
    3. Khouya, Ahmed, 2021. "Modelling and analysis of a hybrid solar dryer for woody biomass," Energy, Elsevier, vol. 216(C).
    4. Brassard, P. & Godbout, S. & Hamelin, L., 2021. "Framework for consequential life cycle assessment of pyrolysis biorefineries: A case study for the conversion of primary forestry residues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    5. Andrea Colantoni & Rodolfo Picchio & Alvaro Marucci & Elena Di Mattia & Valerio Cristofori & Fabio Recanatesi & Mauro Villarini & Danilo Monarca & Massimo Cecchini, 2020. "WP3—Innovation in Agriculture and Forestry Sector for Energetic Sustainability," Energies, MDPI, vol. 13(22), pages 1-7, November.
    6. Mohamed Haddouche & Adrian Ilinca, 2022. "Energy Efficiency and Industry 4.0 in Wood Industry: A Review and Comparison to Other Industries," Energies, MDPI, vol. 15(7), pages 1-25, March.
    7. Marco Segreto & Lucas Principe & Alexandra Desormeaux & Marco Torre & Laura Tomassetti & Patrizio Tratzi & Valerio Paolini & Francesco Petracchini, 2020. "Trends in Social Acceptance of Renewable Energy Across Europe—A Literature Review," IJERPH, MDPI, vol. 17(24), pages 1-19, December.
    8. Luigi Pari & Vincenzo Alfano & Walter Stefanoni & Francesco Latterini & Federico Liuzzi & Isabella De Bari & Vito Valerio & Anna Ciancolini, 2021. "Inulin Content in Chipped and Whole Roots of Cardoon after Six Months Storage under Natural Conditions," Sustainability, MDPI, vol. 13(7), pages 1-11, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lingayat, Abhay Bhanudas & Chandramohan, V.P. & Raju, V.R.K. & Meda, Venkatesh, 2020. "A review on indirect type solar dryers for agricultural crops – Dryer setup, its performance, energy storage and important highlights," Applied Energy, Elsevier, vol. 258(C).
    2. Mathew, Adarsh Abi & Thangavel, Venugopal, 2021. "A novel thermal energy storage integrated evacuated tube heat pipe solar dryer for agricultural products: Performance and economic evaluation," Renewable Energy, Elsevier, vol. 179(C), pages 1674-1693.
    3. Hany S. EL-Mesery & Abd El-Fatah Abomohra & Chan-Ung Kang & Ji-Kwang Cheon & Bikram Basak & Byong-Hun Jeon, 2019. "Evaluation of Infrared Radiation Combined with Hot Air Convection for Energy-Efficient Drying of Biomass," Energies, MDPI, vol. 12(14), pages 1-15, July.
    4. Yang, Bo & Yuan, Weixing & Fu, Lin & Zhang, Shigang & Wei, Maolin & Guo, Dongcai, 2020. "Techno-economic study of full-open absorption heat pump applied to flue gas total heat recovery," Energy, Elsevier, vol. 190(C).
    5. Leino, M. & Uusitalo, V. & Grönman, A. & Nerg, J. & Horttanainen, M. & Soukka, R. & Pyrhönen, J., 2016. "Economics and greenhouse gas balance of distributed electricity production at sawmills using hermetic turbogenerator," Renewable Energy, Elsevier, vol. 88(C), pages 102-111.
    6. Evan Eduard Susanto & Agus Saptoro & Perumal Kumar & Angnes Ngieng Tze Tiong & Aditya Putranto & Suherman Suherman, 2024. "7E + Q analysis: a new multi-dimensional assessment tool of solar dryer for food and agricultural products," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 16363-16385, July.
    7. Mediavilla, Irene & Barro, Ruth & Borjabad, Elena & Peña, David & Fernández, Miguel J., 2020. "Quality of olive stone as a fuel: Influence of oil content on combustion process," Renewable Energy, Elsevier, vol. 160(C), pages 374-384.
    8. Hossain, Md. Sanowar & Masuk, Nahid Imtiaz & Das, Barun K. & Das, Arnob & Kibria, Md. Golam & Chowdhury, Miftahul Mobin & Shozib, Imtiaz Ahmed, 2023. "Theoretical estimation of energy potential and environmental emissions mitigation for major livestock manure in Bangladesh," Renewable Energy, Elsevier, vol. 217(C).
    9. Hauk, Sebastian & Knoke, Thomas & Wittkopf, Stefan, 2014. "Economic evaluation of short rotation coppice systems for energy from biomass—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 435-448.
    10. Valdes, Javier & Masip Macia, Yunesky & Dorner, Wolfgang & Ramirez Camargo, Luis, 2021. "Unsupervised grouping of industrial electricity demand profiles: Synthetic profiles for demand-side management applications," Energy, Elsevier, vol. 215(PA).
    11. Murthy, M.V. Ramana, 2009. "A review of new technologies, models and experimental investigations of solar driers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 835-844, May.
    12. Özge Çepelioğullar Mutlu & Daniel Büchner & Steffi Theurich & Thomas Zeng, 2021. "Combined Use of Solar and Biomass Energy for Sustainable and Cost-Effective Low-Temperature Drying of Food Processing Residues on Industrial-Scale," Energies, MDPI, vol. 14(3), pages 1-22, January.
    13. Anderson, Jan-Olof & Westerlund, Lars, 2011. "Surplus biomass through energy efficient kilns," Applied Energy, Elsevier, vol. 88(12), pages 4848-4853.
    14. Kohl, Thomas & Teles, Moises & Melin, Kristian & Laukkanen, Timo & Järvinen, Mika & Park, Song Won & Guidici, Reinaldo, 2015. "Exergoeconomic assessment of CHP-integrated biomass upgrading," Applied Energy, Elsevier, vol. 156(C), pages 290-305.
    15. Dimitriou, Ioanna & Goldingay, Harry & Bridgwater, Anthony V., 2018. "Techno-economic and uncertainty analysis of Biomass to Liquid (BTL) systems for transport fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 160-175.
    16. Jiang, L. & Li, S. & Wang, R.Q. & Fan, Y.B. & Zhang, X.J. & Roskilly, A.P., 2021. "Performance analysis on a hybrid compression-assisted sorption thermal battery for seasonal heat storage in severe cold region," Renewable Energy, Elsevier, vol. 180(C), pages 398-409.
    17. Braimakis, Konstantinos & Atsonios, Konstantinos & Panopoulos, Kyriakos D. & Karellas, Sotirios & Kakaras, Emmanuel, 2014. "Economic evaluation of decentralized pyrolysis for the production of bio-oil as an energy carrier for improved logistics towards a large centralized gasification plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 57-72.
    18. Lauma Balode & Kristiāna Dolge & Dagnija Blumberga, 2023. "Sector-Specific Pathways to Sustainability: Unravelling the Most Promising Renewable Energy Options," Sustainability, MDPI, vol. 15(16), pages 1-24, August.
    19. Chen, C.Q. & Diao, Y.H. & Zhao, Y.H. & Ji, W.H. & Wang, Z.Y. & Liang, L., 2019. "Thermal performance of a thermal-storage unit by using a multichannel flat tube and rectangular fins," Applied Energy, Elsevier, vol. 250(C), pages 1280-1291.
    20. Sermyagina, Ekaterina & Saari, Jussi & Zakeri, Behnam & Kaikko, Juha & Vakkilainen, Esa, 2015. "Effect of heat integration method and torrefaction temperature on the performance of an integrated CHP-torrefaction plant," Applied Energy, Elsevier, vol. 149(C), pages 24-34.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1590-:d:226118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.