IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v311y2024ics0360544224030172.html
   My bibliography  Save this article

A comprehensive review of heat pump wood drying technologies

Author

Listed:
  • Gao, Lei
  • Fix, Andrew
  • Seabourne, Tamoy
  • Pei, Yong
  • Adegbaye, Patrick
  • Hwang, Yunho
  • Yang, Bao
  • Radermacher, Reinhard

Abstract

Wood drying is one of the most energy-intensive processes in lumber production, and most wood drying kilns rely on combustion for the process heating. Heat pumps are a promising technology for electrifying industrial heating processes, including wood drying. However, the application of heat pumps has been limited, largely due to the long-established popularity and cost-effectiveness of combustion-based technologies. While previous reviews have covered wood drying technologies more generally, this paper aims to bridge the gap between the wood drying and heat pump fields that have largely been investigated separately. This paper reviews the current wood drying process, including standard operating procedures, wood properties, and conventional drying kilns. Then, the current state-of-the-art heat pump wood drying technologies are reviewed, including heat pump cycle options, energy recovery, refrigerant selection, component enhancement, controls, and renewable energy integration. Additionally, other electrically driven technologies that can be combined with heat pumps to improve the efficiency and control of wood drying systems are reviewed. As the electrification of wood drying can significantly reduce global carbon emissions, this review article is a strong foundation for developing innovative systems and components for heat pump wood drying.

Suggested Citation

  • Gao, Lei & Fix, Andrew & Seabourne, Tamoy & Pei, Yong & Adegbaye, Patrick & Hwang, Yunho & Yang, Bao & Radermacher, Reinhard, 2024. "A comprehensive review of heat pump wood drying technologies," Energy, Elsevier, vol. 311(C).
  • Handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224030172
    DOI: 10.1016/j.energy.2024.133241
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224030172
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133241?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Changchun & Han, Wei & Xue, Xiaodong, 2022. "Experimental investigation of a high-temperature heat pump for industrial steam production," Applied Energy, Elsevier, vol. 312(C).
    2. Khouya, Ahmed, 2021. "Modelling and analysis of a hybrid solar dryer for woody biomass," Energy, Elsevier, vol. 216(C).
    3. Suiju Dong & Yin Liu & Zhaofeng Meng & Saina Zhai & Ke Hu & Fan Zhang & Dong Zhou, 2022. "Simulation Study on the Performance of an Enhanced Vapor-Injection Heat-Pump Drying System," Energies, MDPI, vol. 15(24), pages 1-14, December.
    4. Fix, Andrew J. & Oh, Jinwoo & Braun, James E. & Warsinger, David M., 2024. "Dual-module humidity pump for efficient air dehumidification: Demonstration and performance limitations," Applied Energy, Elsevier, vol. 360(C).
    5. Adamson, Keri-Marie & Walmsley, Timothy Gordon & Carson, James K. & Chen, Qun & Schlosser, Florian & Kong, Lana & Cleland, Donald John, 2022. "High-temperature and transcritical heat pump cycles and advancements: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Lamrani, Bilal & Kuznik, Frédéric & Ajbar, Abdelhamid & Boumaza, Mourad, 2021. "Energy analysis and economic feasibility of wood dryers integrated with heat recovery unit and solar air heaters in cold and hot climates," Energy, Elsevier, vol. 228(C).
    7. Ceylan, Ilhan & Aktas, Mustafa, 2008. "Modeling of a hazelnut dryer assisted heat pump by using artificial neural networks," Applied Energy, Elsevier, vol. 85(9), pages 841-854, September.
    8. Anderson, Jan-Olof & Westerlund, Lars, 2014. "Improved energy efficiency in sawmill drying system," Applied Energy, Elsevier, vol. 113(C), pages 891-901.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leino, M. & Uusitalo, V. & Grönman, A. & Nerg, J. & Horttanainen, M. & Soukka, R. & Pyrhönen, J., 2016. "Economics and greenhouse gas balance of distributed electricity production at sawmills using hermetic turbogenerator," Renewable Energy, Elsevier, vol. 88(C), pages 102-111.
    2. Baibhaw Kumar & Gábor Szepesi & Zoltán Szamosi & Gyula Krámer, 2023. "Analysis of a Combined Solar Drying System for Wood-Chips, Sawdust, and Pellets," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    3. Feng, Jiayu & Gao, Jintong & Hu, Bin & Wang, Ruzhu & Xu, Zhenyuan, 2024. "A mass-coupled hybrid absorption-compression heat pump with output temperature of 200 °C," Energy, Elsevier, vol. 312(C).
    4. Angelo Del Giudice & Andrea Acampora & Enrico Santangelo & Luigi Pari & Simone Bergonzoli & Ettore Guerriero & Francesco Petracchini & Marco Torre & Valerio Paolini & Francesco Gallucci, 2019. "Wood Chip Drying through the Using of a Mobile Rotary Dryer," Energies, MDPI, vol. 12(9), pages 1-16, April.
    5. Chen, Zhidong & Su, Chao & Wu, Zexuan & Wang, Weijia & Chen, Lei & Yang, Lijun & Kong, Yanqiang & Du, Xiaoze, 2023. "Operation strategy and performance analyses of a distributed energy system incorporating concentrating PV/T and air source heat pump for heating supply," Applied Energy, Elsevier, vol. 341(C).
    6. Lamrani, Bilal & Elmrabet, Yasmine & Mathew, Ibeh & Bekkioui, Naoual & Etim, Promise & Chahboun, Adil & Draoui, Abdeslam & Ndukwu, Macmanus Chinenye, 2022. "Energy, economic analysis and mathematical modelling of mixed-mode solar drying of potato slices with thermal storage loaded V-groove collector: Application to Maghreb region," Renewable Energy, Elsevier, vol. 200(C), pages 48-58.
    7. Sergio Bobbo & Giulia Lombardo & Davide Menegazzo & Laura Vallese & Laura Fedele, 2024. "A Technological Update on Heat Pumps for Industrial Applications," Energies, MDPI, vol. 17(19), pages 1-55, October.
    8. Efendi, Mohamad, 2024. "Influence of glazing type on the drying kinetics and thermal performance of indirect solar dryer for jelly candy," Renewable Energy, Elsevier, vol. 231(C).
    9. Gungor, Aysegul & Erbay, Zafer & Hepbasli, Arif, 2011. "Exergetic analysis and evaluation of a new application of gas engine heat pumps (GEHPs) for food drying processes," Applied Energy, Elsevier, vol. 88(3), pages 882-891, March.
    10. Albà, C.G. & Alkhatib, I.I.I. & Llovell, F. & Vega, L.F., 2023. "Hunting sustainable refrigerants fulfilling technical, environmental, safety and economic requirements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    11. Ziółkowski, Paweł & Witanowski, Łukasz & Klonowicz, Piotr & Mikielewicz, Dariusz, 2024. "High-speed multi-stage gas-steam turbine with flow bleeding in a novel thermodynamic cycle for decarbonizing power generation," Renewable Energy, Elsevier, vol. 237(PB).
    12. Hao, Wengang & Liu, Shuonan & Lai, Yanhua & Wang, Mingtao & Liu, Shengze, 2022. "Research on drying Lentinus edodes in a direct expansion heat pump assisted solar drying system and performance of different operating modes," Renewable Energy, Elsevier, vol. 196(C), pages 638-647.
    13. Kong, Decheng & Wang, Yunfeng & Li, Ming & Liang, Jingkang, 2022. "Experimental investigation of a novel hybrid drying system powered by a solar photovoltaic/thermal air collector and wind turbine," Renewable Energy, Elsevier, vol. 194(C), pages 705-718.
    14. Gómez-Hernández, J. & Grimes, R. & Briongos, J.V. & Marugán-Cruz, C. & Santana, D., 2023. "Carbon dioxide and acetone mixtures as refrigerants for industry heat pumps to supply temperature in the range 150–220 oC," Energy, Elsevier, vol. 269(C).
    15. Mohanraj, M. & Jayaraj, S. & Muraleedharan, C., 2009. "Performance prediction of a direct expansion solar assisted heat pump using artificial neural networks," Applied Energy, Elsevier, vol. 86(9), pages 1442-1449, September.
    16. Amine Allouhi, 2023. "Latent Thermal Energy Storage for Solar Industrial Drying Applications," Sustainability, MDPI, vol. 15(17), pages 1-18, September.
    17. Guo, Yabin & Li, Yuduo & Li, Weilin, 2023. "On-site fault experiment and diagnosis research of the carbon dioxide transcritical heat pump system for energy saving," Energy, Elsevier, vol. 274(C).
    18. Kung, Kevin S. & Ghoniem, Ahmed F., 2019. "Multi-scale analysis of drying thermally thick biomass for bioenergy applications," Energy, Elsevier, vol. 187(C).
    19. Jouhara, Hussam & Żabnieńska-Góra, Alina & Delpech, Bertrand & Olabi, Valentina & El Samad, Tala & Sayma, Abdulnaser, 2024. "High-temperature heat pumps: Fundamentals, modelling approaches and applications," Energy, Elsevier, vol. 303(C).
    20. Lingayat, Abhay Bhanudas & Chandramohan, V.P. & Raju, V.R.K. & Meda, Venkatesh, 2020. "A review on indirect type solar dryers for agricultural crops – Dryer setup, its performance, energy storage and important highlights," Applied Energy, Elsevier, vol. 258(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224030172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.