IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i8p1499-d224587.html
   My bibliography  Save this article

Vindby—A Serious Offshore Wind Farm Design Game

Author

Listed:
  • Esther Dornhelm

    (Department of Civil and Environmental Engineering, Norwegian University of Science and Technology NTNU, NO-7491 Trondheim, Norway)

  • Helene Seyr

    (Department of Civil and Environmental Engineering, Norwegian University of Science and Technology NTNU, NO-7491 Trondheim, Norway)

  • Michael Muskulus

    (Department of Civil and Environmental Engineering, Norwegian University of Science and Technology NTNU, NO-7491 Trondheim, Norway)

Abstract

To maintain the increasing interest and development in offshore wind energy, novel training tools for engineers and researchers are needed. Concurrently, educational outreach activities are in demand to inform the public about the importance of offshore wind energy. In this paper, the development of a serious game about the design and management of offshore wind farms is presented to address such demands. Such a serious game may enable a new audience to explore the field of offshore wind as well as provide researchers entering the field a better understanding of the intricacies of the industry. This requires a simulation that is realistic but also effective in teaching information and engaging outreach. Ultimately, increased public support and expanded training tools are desired to improve decision-making and to provide opportunities to test and integrate innovative solutions. The work presented here includes the game design and implementation of a prototype game. The game design involves building a game framework and developing a simplified simulation. This simulation addresses weather prediction, offshore wind farm design, operation and maintenance, energy demand, climate change, and finance. Playtesting of the prototype demonstrated immersion and informed decision-making of the players and surveys revealed that knowledge had increased while playing the game. Recommendations for future versions of the game are listed.

Suggested Citation

  • Esther Dornhelm & Helene Seyr & Michael Muskulus, 2019. "Vindby—A Serious Offshore Wind Farm Design Game," Energies, MDPI, vol. 12(8), pages 1-22, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1499-:d:224587
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/8/1499/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/8/1499/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Myhr, Anders & Bjerkseter, Catho & Ågotnes, Anders & Nygaard, Tor A., 2014. "Levelised cost of energy for offshore floating wind turbines in a life cycle perspective," Renewable Energy, Elsevier, vol. 66(C), pages 714-728.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ren, Zhengru & Verma, Amrit Shankar & Li, Ye & Teuwen, Julie J.E. & Jiang, Zhiyu, 2021. "Offshore wind turbine operations and maintenance: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Helene Seyr & Michael Muskulus, 2019. "Use of Markov Decision Processes in the Evaluation of Corrective Maintenance Scheduling Policies for Offshore Wind Farms," Energies, MDPI, vol. 12(15), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Hui & Wang, LiGuo, 2023. "Numerical study on self-power supply of large marine monitoring buoys: Wave-excited vibration energy harvesting and harvester optimization," Energy, Elsevier, vol. 285(C).
    2. Carpintero Moreno, Efrain & Stansby, Peter, 2019. "The 6-float wave energy converter M4: Ocean basin tests giving capture width, response and energy yield for several sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 307-318.
    3. Rubio-Domingo, G. & Linares, P., 2021. "The future investment costs of offshore wind: An estimation based on auction results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    4. Javier Serrano González & Manuel Burgos Payán & Jesús Manuel Riquelme Santos & Ángel Gaspar González Rodríguez, 2021. "Optimal Micro-Siting of Weathervaning Floating Wind Turbines," Energies, MDPI, vol. 14(4), pages 1-19, February.
    5. Castro-Santos, Laura & Martins, Elson & Guedes Soares, C., 2016. "Cost assessment methodology for combined wind and wave floating offshore renewable energy systems," Renewable Energy, Elsevier, vol. 97(C), pages 866-880.
    6. López, A. & Morán, J.L. & Núñez, L.R. & Somolinos, J.A., 2020. "Study of a cost model of tidal energy farms in early design phases with parametrization and numerical values. Application to a second-generation device," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    7. Chen, Hao & Gao, Xin-Ya & Liu, Jian-Yu & Zhang, Qian & Yu, Shiwei & Kang, Jia-Ning & Yan, Rui & Wei, Yi-Ming, 2020. "The grid parity analysis of onshore wind power in China: A system cost perspective," Renewable Energy, Elsevier, vol. 148(C), pages 22-30.
    8. Manuel Corrales-Gonzalez & George Lavidas & Giovanni Besio, 2023. "Feasibility of Wave Energy Harvesting in the Ligurian Sea, Italy," Sustainability, MDPI, vol. 15(11), pages 1-22, June.
    9. Karimirad, Madjid & Michailides, Constantine, 2015. "V-shaped semisubmersible offshore wind turbine: An alternative concept for offshore wind technology," Renewable Energy, Elsevier, vol. 83(C), pages 126-143.
    10. Brooks, Sam & Mahmood, Minhal & Roy, Rajkumar & Manolesos, Marinos & Salonitis, Konstantinos, 2023. "Self-reconfiguration simulations of turbines to reduce uneven farm degradation," Renewable Energy, Elsevier, vol. 206(C), pages 1301-1314.
    11. A.H.T. Shyam Kularathna & Sayaka Suda & Ken Takagi & Shigeru Tabeta, 2019. "Evaluation of Co-Existence Options of Marine Renewable Energy Projects in Japan," Sustainability, MDPI, vol. 11(10), pages 1-26, May.
    12. Ika Kurniawati & Beatriz Beaumont & Ramon Varghese & Danka Kostadinović & Ivan Sokol & Hassan Hemida & Panagiotis Alevras & Charalampos Baniotopoulos, 2023. "Conceptual Design of a Floating Modular Energy Island for Energy Independency: A Case Study in Crete," Energies, MDPI, vol. 16(16), pages 1-21, August.
    13. Pape, Christian, 2018. "The impact of intraday markets on the market value of flexibility — Decomposing effects on profile and the imbalance costs," Energy Economics, Elsevier, vol. 76(C), pages 186-201.
    14. Pennock, Shona & Vanegas-Cantarero, María M. & Bloise-Thomaz, Tianna & Jeffrey, Henry & Dickson, Matthew J., 2022. "Life cycle assessment of a point-absorber wave energy array," Renewable Energy, Elsevier, vol. 190(C), pages 1078-1088.
    15. Santhakumar, Srinivasan & Meerman, Hans & Faaij, André, 2024. "Future costs of key emerging offshore renewable energy technologies," Renewable Energy, Elsevier, vol. 222(C).
    16. Prakash, Vrishab & Ghosh, Sajal & Kanjilal, Kakali, 2020. "Costs of avoided carbon emission from thermal and renewable sources of power in India and policy implications," Energy, Elsevier, vol. 200(C).
    17. Laura Castro-Santos & Almudena Filgueira-Vizoso, 2019. "A Software for Calculating the Economic Aspects of Floating Offshore Renewable Energies," IJERPH, MDPI, vol. 17(1), pages 1-19, December.
    18. Han, Chenlu & Nagamune, Ryozo, 2020. "Platform position control of floating wind turbines using aerodynamic force," Renewable Energy, Elsevier, vol. 151(C), pages 896-907.
    19. Rusu, Eugen & Onea, Florin, 2019. "A parallel evaluation of the wind and wave energy resources along the Latin American and European coastal environments," Renewable Energy, Elsevier, vol. 143(C), pages 1594-1607.
    20. Vincenzo Piscopo & Guido Benassai & Renata Della Morte & Antonio Scamardella, 2018. "Cost-Based Design and Selection of Point Absorber Devices for the Mediterranean Sea," Energies, MDPI, vol. 11(4), pages 1-23, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1499-:d:224587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.