IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i16p5921-d1214492.html
   My bibliography  Save this article

Conceptual Design of a Floating Modular Energy Island for Energy Independency: A Case Study in Crete

Author

Listed:
  • Ika Kurniawati

    (Department of Wind Engineering and Fluid Dynamics, Faculty of Civil and Environmental Engineering, Ruhr-Universität Bochum, 44780 Bochum, Germany)

  • Beatriz Beaumont

    (Department of Geographic, Geophysics Engineering and Energy, Faculty of Sciences, University of Lisbon, 1649-004 Lisbon, Portugal)

  • Ramon Varghese

    (School of Mechanical and Materials Engineering, University College Dublin, D04 V1W8 Dublin, Ireland)

  • Danka Kostadinović

    (Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia)

  • Ivan Sokol

    (Croatian Roads Ltd., 10000 Zagreb, Croatia)

  • Hassan Hemida

    (Department of Civil Engineering, School of Engineering, University of Birmingham, Birmingham B15 2TT, UK)

  • Panagiotis Alevras

    (School of Production Engineering and Management, Technical University of Crete, 731 00 Chania, Greece)

  • Charalampos Baniotopoulos

    (Department of Civil Engineering, School of Engineering, University of Birmingham, Birmingham B15 2TT, UK)

Abstract

This paper aims to investigate the development of a floating artificial sustainable energy island at a conceptual design level that would enhance the energy independence of islands focusing on a case study on the island of Crete. This paper provides a baseline assessment showing the immense potential of wind and solar energy in and around Crete integrating the third significant renewable energy source (RES) of ocean waves into the energy island. The selection of the best location for the floating offshore platforms that compose the energy island is addressed through exploiting the great potential of the above-mentioned RES, taking into consideration criteria with regard to several significant human activities. To this end, the concept of an innovative floating modular energy island (FMEI) that integrates different renewable energy resources is proposed; in addition, a case study that focuses on the energy independency of a big island illustrates the concept referring to the substitution of the local thermal power plants that are currently in operation in Crete with sustainable energy power. Although focused on the renewable energy resources around Crete, the work of this paper provides a basis for a systematic offshore renewable energy assessment as it proposes a new methodology that could be used anywhere around the globe.

Suggested Citation

  • Ika Kurniawati & Beatriz Beaumont & Ramon Varghese & Danka Kostadinović & Ivan Sokol & Hassan Hemida & Panagiotis Alevras & Charalampos Baniotopoulos, 2023. "Conceptual Design of a Floating Modular Energy Island for Energy Independency: A Case Study in Crete," Energies, MDPI, vol. 16(16), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:5921-:d:1214492
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/16/5921/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/16/5921/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alberto Ghigo & Emilio Faraggiana & Massimo Sirigu & Giuliana Mattiazzo & Giovanni Bracco, 2022. "Design and Analysis of a Floating Photovoltaic System for Offshore Installation: The Case Study of Lampedusa," Energies, MDPI, vol. 15(23), pages 1-30, November.
    2. Marmidis, Grigorios & Lazarou, Stavros & Pyrgioti, Eleftheria, 2008. "Optimal placement of wind turbines in a wind park using Monte Carlo simulation," Renewable Energy, Elsevier, vol. 33(7), pages 1455-1460.
    3. Lavidas, George & Venugopal, Vengatesan, 2017. "A 35 year high-resolution wave atlas for nearshore energy production and economics at the Aegean Sea," Renewable Energy, Elsevier, vol. 103(C), pages 401-417.
    4. Myhr, Anders & Bjerkseter, Catho & Ågotnes, Anders & Nygaard, Tor A., 2014. "Levelised cost of energy for offshore floating wind turbines in a life cycle perspective," Renewable Energy, Elsevier, vol. 66(C), pages 714-728.
    5. Dimitra G. Vagiona & Manos Kamilakis, 2018. "Sustainable Site Selection for Offshore Wind Farms in the South Aegean—Greece," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    6. Ayat, Berna, 2013. "Wave power atlas of Eastern Mediterranean and Aegean Seas," Energy, Elsevier, vol. 54(C), pages 251-262.
    7. Keiner, Dominik & Salcedo-Puerto, Orlando & Immonen, Ekaterina & van Sark, Wilfried G.J.H.M. & Nizam, Yoosuf & Shadiya, Fathmath & Duval, Justine & Delahaye, Timur & Gulagi, Ashish & Breyer, Christian, 2022. "Powering an island energy system by offshore floating technologies towards 100% renewables: A case for the Maldives," Applied Energy, Elsevier, vol. 308(C).
    8. Benjamin Pakenham & Anna Ermakova & Ali Mehmanparast, 2021. "A Review of Life Extension Strategies for Offshore Wind Farms Using Techno-Economic Assessments," Energies, MDPI, vol. 14(7), pages 1-23, March.
    9. Dunnett, David & Wallace, James S., 2009. "Electricity generation from wave power in Canada," Renewable Energy, Elsevier, vol. 34(1), pages 179-195.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masoud, Alaa A., 2022. "On the Nile Fan's wave power potential and controlling factors integrating spectral and geostatistical techniques," Renewable Energy, Elsevier, vol. 196(C), pages 921-945.
    2. Chenglong Guo & Wanan Sheng & Dakshina G. De Silva & George Aggidis, 2023. "A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model," Energies, MDPI, vol. 16(5), pages 1-30, February.
    3. Manuel Corrales-Gonzalez & George Lavidas & Giovanni Besio, 2023. "Feasibility of Wave Energy Harvesting in the Ligurian Sea, Italy," Sustainability, MDPI, vol. 15(11), pages 1-22, June.
    4. Fadaeenejad, M. & Shamsipour, R. & Rokni, S.D. & Gomes, C., 2014. "New approaches in harnessing wave energy: With special attention to small islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 345-354.
    5. Laura Castro-Santos & Almudena Filgueira-Vizoso, 2019. "A Software for Calculating the Economic Aspects of Floating Offshore Renewable Energies," IJERPH, MDPI, vol. 17(1), pages 1-19, December.
    6. Morim, Joao & Cartwright, Nick & Etemad-Shahidi, Amir & Strauss, Darrell & Hemer, Mark, 2016. "Wave energy resource assessment along the Southeast coast of Australia on the basis of a 31-year hindcast," Applied Energy, Elsevier, vol. 184(C), pages 276-297.
    7. Laura Castro-Santos & Almudena Filgueira-Vizoso & Carlos Álvarez-Feal & Luis Carral, 2018. "Influence of Size on the Economic Feasibility of Floating Offshore Wind Farms," Sustainability, MDPI, vol. 10(12), pages 1-13, November.
    8. Valentina Vannucchi & Lorenzo Cappietti, 2016. "Wave Energy Assessment and Performance Estimation of State of the Art Wave Energy Converters in Italian Hotspots," Sustainability, MDPI, vol. 8(12), pages 1-21, December.
    9. Evangelia Dialyna & Theocharis Tsoutsos, 2021. "Wave Energy in the Mediterranean Sea: Resource Assessment, Deployed WECs and Prospects," Energies, MDPI, vol. 14(16), pages 1-18, August.
    10. Clark, Caitlyn E. & Miller, Annalise & DuPont, Bryony, 2019. "An analytical cost model for co-located floating wind-wave energy arrays," Renewable Energy, Elsevier, vol. 132(C), pages 885-897.
    11. Ivana Racetin & Nives Ostojić Škomrlj & Marina Peko & Mladen Zrinjski, 2023. "Fuzzy Multi-Criteria Decision for Geoinformation System-Based Offshore Wind Farm Positioning in Croatia," Energies, MDPI, vol. 16(13), pages 1-18, June.
    12. Shi, Xueli & Liang, Bingchen & Du, Shengtao & Shao, Zhuxiao & Li, Shaowu, 2022. "Wave energy assessment in the China East Adjacent Seas based on a 25-year wave-current interaction numerical simulation," Renewable Energy, Elsevier, vol. 199(C), pages 1381-1407.
    13. Dinçer, A.E. & Demir, A. & Yılmaz, K., 2024. "Multi-objective turbine allocation on a wind farm site," Applied Energy, Elsevier, vol. 355(C).
    14. Choupin, Ophelie & Henriksen, Michael & Tomlinson, Rodger, 2022. "Interrelationship between variables for wave direction-dependent WEC/site-configuration pairs using the CapEx method," Energy, Elsevier, vol. 248(C).
    15. Sofia Spyridonidou & Dimitra G. Vagiona & Eva Loukogeorgaki, 2020. "Strategic Planning of Offshore Wind Farms in Greece," Sustainability, MDPI, vol. 12(3), pages 1-20, January.
    16. Choupin, O. & Pinheiro Andutta, F. & Etemad-Shahidi, A. & Tomlinson, R., 2021. "A decision-making process for wave energy converter and location pairing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    17. Ophelie Choupin & Michael Henriksen & Amir Etemad-Shahidi & Rodger Tomlinson, 2021. "Breaking-Down and Parameterising Wave Energy Converter Costs Using the CapEx and Similitude Methods," Energies, MDPI, vol. 14(4), pages 1-27, February.
    18. Liang, Bingchen & Shao, Zhuxiao & Wu, Yajie & Shi, Hongda & Liu, Zhen, 2017. "Numerical study to estimate the wave energy under Wave-Current Interaction in the Qingdao coast, China," Renewable Energy, Elsevier, vol. 101(C), pages 845-855.
    19. Dinçer, A.Ersin & Demir, A. & Yılmaz, K., 2023. "Enhancing wind turbine site selection through a novel wake penalty criterion," Energy, Elsevier, vol. 283(C).
    20. Takvor H. Soukissian & Dimitra Denaxa & Flora Karathanasi & Aristides Prospathopoulos & Konstantinos Sarantakos & Athanasia Iona & Konstantinos Georgantas & Spyridon Mavrakos, 2017. "Marine Renewable Energy in the Mediterranean Sea: Status and Perspectives," Energies, MDPI, vol. 10(10), pages 1-56, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:5921-:d:1214492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.